ข้ามไปที่เนื้อหาหลัก

บทความ

กำลังแสดงโพสต์จาก กุมภาพันธ์, 2025

การแปลผลตรวจความสมบูรณ์ของเม็ดเลือด (Complete Blood Count - CBC)

การตรวจความสมบูรณ์ของเม็ดเลือด (Complete Blood Count - CBC) เป็นหนึ่งในการตรวจทางห้องปฏิบัติการที่ใช้กันอย่างแพร่หลายเป็นพื้นฐานการตรวจเบื้องต้นเลยทีเดียวครับ โดยผลตรวจ CBC นี้จะถูกนำมาใช้เพื่อประเมินสุขภาพโดยรวมของเรา การคัดกรองภาวะโลหิตจาง การติดเชื้อ และโรคเกี่ยวกับเลือดอื่น ๆ ดังนั้นการแปลผล CBC อย่างถูกต้องจะช่วยให้แพทย์สามารถวินิจฉัยและติดตามอาการของโรคได้อย่างแม่นยำ ในบทความนี้เราจะอธิบายองค์ประกอบหลักของการตรวย CBC และความหมายของค่าที่ตรวจพบกันครับ องค์ประกอบหลักของการตรวจ CBC และการแปลผล การตรวจ CBC ประกอบด้วยค่าพื้นฐานหลักที่สำคัญ ได้แก่ 1. เม็ดเลือดแดง (Red Blood Cells - RBCs) เม็ดเลือดแดงมีหน้าที่ลำเลียงออกซิเจนจากปอดไปยังเนื้อเยื่อต่าง ๆ ในร่างกาย ค่าที่สำคัญที่ใช้ประเมินเม็ดเลือดแดง ได้แก่: ปริมาณของเม็ดเลือดแดง (RBC count): ค่าปกติในเพศชายประมาณ 4.7-6.1 ล้านเซลล์/ไมโครลิตร และในเพศหญิง 4.2-5.4 ล้านเซลล์/ไมโครลิตร ค่าที่ต่ำอาจบ่งบอกถึงภาวะโลหิตจาง ในขณะที่ค่าที่สูงอาจสัมพันธ์กับภาวะขาดน้ำหรือโรคไขกระดูก ฮีโมโกลบิน (Hemoglobin - Hgb): เป็นโปรตีนในเม็ดเลือดแดงที่ทำหน้าที...

โรคดาวน์ซินโดรมคืออะไร?

โรคดาวน์ซินโดรม ความเข้าใจในทุกมิติ โรคดาวน์ซินโดรม (Down syndrome) เป็นหนึ่งในภาวะทางพันธุกรรมที่ได้รับความสนใจมากที่สุด เนื่องจากส่งผลกระทบต่อชีวิตของผู้ป่วยและครอบครัวในหลายมิติ ดาวน์ซินโดรมเกิดจากการมีโครโมโซมคู่ที่ 21 เกินมา 1 แท่ง ซึ่งทำให้จำนวนโครโมโซมทั้งหมดกลายเป็น 47 แท่งแทนที่จะเป็น 46 แท่ง ความผิดปกตินี้ส่งผลกระทบต่อพัฒนาการทางร่างกาย สติปัญญา และสุขภาพโดยรวมของผู้ป่วย โรคนี้เป็นภาวะที่พบได้บ่อยที่สุดในกลุ่มความผิดปกติของโครโมโซม และมีอุบัติการณ์ประมาณ 1 ใน 700 ของทารกแรกเกิด นั่นหมายความว่า ในทุก ๆ ปีจะมีเด็กที่เกิดมาพร้อมภาวะนี้จำนวนไม่น้อย ซึ่งทำให้ความเข้าใจและการสนับสนุนจากครอบครัวและสังคมมีความสำคัญอย่างยิ่ง ในบทความนี้ เราจะพาคุณไปสำรวจทุกแง่มุมของโรคดาวน์ซินโดรม ตั้งแต่สาเหตุ อาการ ไปจนถึงแนวทางการดูแลและการส่งเสริมคุณภาพชีวิตของผู้ป่วยเพื่อให้พวกเขาสามารถดำรงชีวิตได้อย่างมีคุณค่าและมีความสุข สาเหตุและพันธุกรรม โรคดาวน์ซินโดรมเกิดจากความผิดปกติของโครโมโซมคู่ที่ 21 ซึ่งแบ่งออกเป็น 3 ประเภทหลัก ได้แก่: Trisomy 21 (พบ 95% ของผู้ป่วย) – เกิดจากการมีโครโมโซม 21 เกินมาทั...

การตรวจ NIPT หรือ Non-Invasive Prenatal Testing คืออะไร?

NIPT (Non-Invasive Prenatal Testing) การตรวจทางเลือกที่ปลอดภัยและแม่นยำสำหรับหญิงตั้งครรภ์ การตรวจคัดกรองก่อนคลอดบุตรมีความสำคัญอย่างมากในการดูแลสุขภาพของทารกในครรภ์ และการตรวจ  NIPT (Non-Invasive Prenatal Testing) เป็นหนึ่งในวิธีที่ทันสมัยและมีความแม่นยำสูงมากและได้รับความนิยมในการตรวจคัดกรองปัจจุบัน โดยสามารถช่วยระบุความผิดปกติของโครโมโซมของทารกได้อย่างปลอดภัยโดยไม่ได้ทำให้เกิดอันตราย (invasive) เหมือนกับการการตรวจแบบดั้งเดิม เช่น การเจาะน้ำคร่ำ (amniocentesis) หรือการตรวจชิ้นเนื้อรก (CVS, chorionic villus sampling)  หลักการทำงานของ NIPT เป็นการวิเคราะห์ DNA ของทารกที่ปนเปื้อนอยู่ในกระแสเลือดของมารดา (cell-free fetal DNA หรือ cfDNA) โดยใช้เทคนิคการตรวจวิเคราะห์ทางพันธุกรรมที่มีความแม่นยำสูง เช่น การหาลำดับเบสของ DNA (Next-Generation Sequencing; NGS) หรือการใช้เทคนิค PCR (Polymerase Chain Reaction) เพื่อวิเคราะห์โครโมโซมของทารก หากมีความผิดปกติ เช่น โครโมโซมเกินหรือขาด ระบบสามารถตรวจจับได้อย่างรวดเร็วและแม่นยำ ความผิดปกติที่สามารถตรวจพบได้ กลุ่มอาการดาวน์ (Trisomy 21) กลุ่มอ...

หลักการ Nanopore sequencing เครื่องวิเคราะห์ลำดับสารพันธุกรรมสายยาว

ความเป็นมาของ Nanopore sequencing Nanopore sequencing เป็นเทคโนโลยีการถอดรหัสลำดับ DNA และ RNA ที่พัฒนาขึ้นในช่วงปี 1980 โดยมีการค้นพบโปรตีนที่ทำหน้าที่เป็นช่องเล็กๆ (nanopore) ที่สามารถตรวจจับประจุไอออนจากกรดนิวคลีอิกได้. เทคโนโลยีนี้ได้รับการพัฒนาอย่างต่อเนื่อง จนกระทั่ง Oxford Nanopore Technologies (ONT) ได้เปิดตัวอุปกรณ์ที่สามารถใช้งานได้ง่ายและสะดวกในปี 2018 ซึ่งสามารถทำการถอดรหัสพันธุกรรมได้ทุกที่ https://www.nature.com/articles/s41587-021-01108-x หลักการและทฤษฏี หลักการทำงานของ nanopore sequencing คือ การใช้กระแสไฟฟ้าผ่านรูขนาดเล็กของโปรตีนที่เรียกว่า nanopore เพื่อให้โมเลกุลกรดนิวคลีอิก (DNA หรือ RNA) ผ่านเข้าไปในรูนี้ เมื่อโมเลกุลเหล่านี้เคลื่อนที่ผ่าน nanopore จะเกิดการเปลี่ยนแปลงของกระแสไฟฟ้าที่สามารถวัดได้ ซึ่งจะถูกแปลงเป็นลำดับเบสของ nucleotides. การใช้ motor protein ช่วยในการควบคุมการเคลื่อนที่ของ DNA หรือ RNA ทำให้สามารถอ่านลำดับเบสได้อย่างแม่นยำและรวดเร็ว โดยมีความเร็วในการอ่านประมาณ 450 เบสต่อวินาที กระบวนการวิเคราะห์ กระบวนการวิเคราะห์ข้อมูลจาก nanopore sequencing ประ...

เซลล์ต้นกำนิดตัวอ่อน (Pluripotent Stem Cells; iPSCs) ที่สร้างขึ้นจากเซลล์ร่างกายของเรา

ความหมายและจุดเริ่มต้นของ iPSCs iPSCs หรือ Induced Pluripotent Stem Cells คือเซลล์ต้นกำเนิดตัวอ่อนที่ถูกสร้างขึ้นจากเซลล์ร่างกายของเรา เช่น เซลล์ไฟโบรบลาสต์ (fibroblast) หรือเซลล์เม็ดเลือด (เช่น erythoid progenitor cells) โดยใช้วิธีการรีโปรแกรมเซลล์ใหม่ให้กลับไปอยู่ในระยะของเซลล์ต้นกำเนิดพลูริโพเทนต์ (Pluripotent Stem Cells) โดยเซลล์เหล่านี้มีความสามารถที่จะพัฒนาไปเป็นเซลล์ประเภทต่าง ๆ ในร่างกายเราได้อย่างไม่จำกัด การค้นพบเซลล์ต้นกำเนิด iPSCs เกิดขึ้นในปี 2006 โดย Shinya Yamanaka นักวิทยาศาสตร์ชาวญี่ปุ่นซึ่งได้รับรางวัลโนเบลในปี 2012 สำหรับการค้นพบนี้ การประยุกต์ใช้ เซลล์ต้นกำเนิด iPSCs มีการใช้งานที่หลากหลายทั้งในด้านการวิจัยและการแพทย์ ได้แก่ • การสร้างแบบจำลองโรค: iPSCs สามารถสร้างแบบจำลองสำหรับโรคต่าง ๆ เช่น อัลไซเมอร์และพาร์กินสัน โดยสามารถแยกความแตกต่างเป็นเซลล์ที่เกี่ยวข้องกับโรค • การค้นพบยา: ใช้ในการทดสอบสารประกอบเพื่อค้นหาความสามารถในการรักษาโรค ลดความจำเป็นในการทดลองกับสัตว์ • การบำบัดด้วยเซลล์: iPSCs สามารถใช้ในการสร้างเซลล์ที่แข็งแรงเพื่อทดแทนเนื้อเยื่อที่เสียห...