ข้ามไปที่เนื้อหาหลัก

บทความ

กำลังแสดงโพสต์ที่มีป้ายกำกับ Genetics

หลักการตรวจวิเคราะห์ของ NIPT ด้วย NGS

หลักการตรวจวิเคราะห์ของ NIPT ด้วย NGS การตรวจคัดกรองความผิดปกติของโครโมโซมก่อนคลอดโดยใช้เทคโนโลยีการตรวจหาดีเอ็นเอของทารกจากเลือดมารดา หรือที่เรียกว่า Non-Invasive Prenatal Testing (NIPT) เป็นเทคนิคที่ทันสมัยและมีความแม่นยำสูง NIPT อาศัยเทคโนโลยี Next-Generation Sequencing (NGS) ในการตรวจวิเคราะห์ความผิดปกติของโครโมโซมของทารกจาก cell-free fetal DNA (cffDNA) ที่อยู่ในกระแสเลือดของมารดา หลักการของ NIPT ด้วย NGS 1. การเก็บตัวอย่างและเตรียมดีเอ็นเอ ตัวอย่างเลือดของมารดาจะถูกเก็บในหลอดเฉพาะที่ช่วยรักษาคุณภาพของ cffDNA หลังจากนั้นเลือดจะถูกปั่นแยกพลาสมาออกมา และทำการสกัด cell-free DNA (cfDNA) ซึ่งเป็นส่วนผสมระหว่างดีเอ็นเอของมารดาและทารก การแยก cfDNA ของมารดาและทารกออกจากกัน cfDNA ของทารก (cffDNA) มักจะมีขนาดสั้นกว่า cfDNA ของมารดา โดยทั่วไป cffDNA มีขนาดประมาณ 140-160 bp ในขณะที่ cfDNA ของมารดาจะมีขนาดใหญ่กว่า (มากกว่า 160 bp) สามารถใช้เทคนิค Size Selection เพื่อเลือกเฉพาะชิ้นดีเอ็นเอที่มีขนาดสั้นเพื่อเพิ่มความแม่นยำของการตรวจ นอกจากนี้ ยังสามารถใช้วิธีการคำนวณสัดส่วนของ cfDNA โดยเปรียบเทีย...

โรคดาวน์ซินโดรมคืออะไร?

โรคดาวน์ซินโดรม: ความเข้าใจในทุกมิติ โรคดาวน์ซินโดรม (Down syndrome) เป็นหนึ่งในภาวะทางพันธุกรรมที่ได้รับความสนใจมากที่สุด เนื่องจากส่งผลกระทบต่อชีวิตของผู้ป่วยและครอบครัวในหลายมิติ ดาวน์ซินโดรมเกิดจากการมีโครโมโซมคู่ที่ 21 เกินมา 1 แท่ง ซึ่งทำให้จำนวนโครโมโซมทั้งหมดกลายเป็น 47 แท่งแทนที่จะเป็น 46 แท่ง ความผิดปกตินี้ส่งผลกระทบต่อพัฒนาการทางร่างกาย สติปัญญา และสุขภาพโดยรวมของผู้ป่วย โรคนี้เป็นภาวะที่พบได้บ่อยที่สุดในกลุ่มความผิดปกติของโครโมโซม และมีอุบัติการณ์ประมาณ 1 ใน 700 ของทารกแรกเกิด นั่นหมายความว่า ในทุก ๆ ปีจะมีเด็กที่เกิดมาพร้อมภาวะนี้จำนวนไม่น้อย ซึ่งทำให้ความเข้าใจและการสนับสนุนจากครอบครัวและสังคมมีความสำคัญอย่างยิ่ง ในบทความนี้ เราจะพาคุณไปสำรวจทุกแง่มุมของโรคดาวน์ซินโดรม ตั้งแต่สาเหตุ อาการ ไปจนถึงแนวทางการดูแลและการส่งเสริมคุณภาพชีวิตของผู้ป่วยเพื่อให้พวกเขาสามารถดำรงชีวิตได้อย่างมีคุณค่าและมีความสุข สาเหตุและพันธุกรรม โรคดาวน์ซินโดรมเกิดจากความผิดปกติของโครโมโซมคู่ที่ 21 ซึ่งแบ่งออกเป็น 3 ประเภทหลัก ได้แก่: Trisomy 21 (พบ 95% ของผู้ป่วย) – เกิดจากการมีโครโมโซม 21 เกินมาท...

หลักการ Nanopore sequencing เครื่องวิเคราะห์ลำดับสารพันธุกรรมสายยาว

ความเป็นมาของ Nanopore Nanopore sequencing เป็นเทคโนโลยีการถอดรหัสลำดับ DNA และ RNA ที่พัฒนาขึ้นในช่วงปี 1980 โดยมีการค้นพบโปรตีนที่ทำหน้าที่เป็นช่องเล็กๆ (nanopore) ที่สามารถตรวจจับประจุไอออนจากกรดนิวคลีอิกได้. เทคโนโลยีนี้ได้รับการพัฒนาอย่างต่อเนื่อง จนกระทั่ง Oxford Nanopore Technologies (ONT) ได้เปิดตัวอุปกรณ์ที่สามารถใช้งานได้ง่ายและสะดวกในปี 2018 ซึ่งสามารถทำการถอดรหัสพันธุกรรมได้ทุกที่ https://www.nature.com/articles/s41587-021-01108-x หลักการและทฤษฏี หลักการทำงานของ nanopore sequencing คือ การใช้กระแสไฟฟ้าผ่านรูขนาดเล็กของโปรตีนที่เรียกว่า nanopore เพื่อให้โมเลกุลกรดนิวคลีอิก (DNA หรือ RNA) ผ่านเข้าไปในรูนี้ เมื่อโมเลกุลเหล่านี้เคลื่อนที่ผ่าน nanopore จะเกิดการเปลี่ยนแปลงของกระแสไฟฟ้าที่สามารถวัดได้ ซึ่งจะถูกแปลงเป็นลำดับเบสของ nucleotides. การใช้ motor protein ช่วยในการควบคุมการเคลื่อนที่ของ DNA หรือ RNA ทำให้สามารถอ่านลำดับเบสได้อย่างแม่นยำและรวดเร็ว โดยมีความเร็วในการอ่านประมาณ 450 เบสต่อวินาที กระบวนการวิเคราะห์ กระบวนการวิเคราะห์ข้อมูลจาก nanopore sequencing ประกอบด้วยขั้น...

ความหมายและหลักการของ Next Generation Sequencing (NGS)

หลักการของ Next Generation Sequencing (NGS) Next Generation Sequencing (NGS) เป็นเทคโนโลยีที่ใช้ในการหาลำดับนิวคลีโอไทด์หรือเบสของดีเอ็นเอในปริมาณมากอย่างมีประสิทธิภาพ โดย NGS สามารถอ่านลำดับสารพันธุกรรมได้พร้อมกันในหลายตัวอย่าง ซึ่งเป็นการพัฒนาขึ้นจากเทคนิคการหาลำดับแบบเดิม เช่น Sanger sequencing ที่มีข้อจำกัดในด้านความเร็วและปริมาณข้อมูลที่สามารถประมวลผลได้ในแต่ละครั้ง หลักการที่เป็นจุดเด่นของแต่ละยี่ห้อใน Next Generation Sequencing (NGS) ปัจจุบันเทคโนโลยี Next Generation Sequencing (NGS) มีด้วยกันหลายแพลตฟอร์มที่ถูกคิดค้นพัฒนาขึ้นมาโดยบริษัทต่างๆ ซึ่งแต่ละแพลตฟอร์มมีจุดเด่นและหลักการทำงานที่แตกต่างกัน ดังนี้: 1. Illumina • หลักการทำงาน: ใช้เทคนิค “sequencing by synthesis” ซึ่งจะมีการเพิ่มนิวคลีโอไทด์ที่มีฟลูออเรสเซนต์ในระหว่างการสังเคราะห์ดีเอ็นเอ โดยสามารถอ่านลำดับเบสได้พร้อมกันในปริมาณมาก (massive parallel sequencing) ทำให้สามารถจัดลำดับจีโนมได้อย่างรวดเร็วและมีประสิทธิภาพสูง • จุดเด่น: มีความแม่นยำสูง และสามารถทำการวิเคราะห์หลายตัวอย่างพร้อมกัน (multiplexing) ทำให้เหมาะสำ...

ทำไมการแปลผลทดสอบทางพันธุกรรมถึงไม่ใช่เรื่องง่าย

"ทำไมการแปลผลทดสอบทางพันธุกรรมถึงไม่ใช่เรื่องง่าย" ในปัจจุบันมีการนำเทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมที่ทันสมัยมาใช้มากขึ้นในประเทศไทย แต่การแปลผลทดสอบทางพันธุกรรมนั้นเป็นกระบวนการที่ซับซ้อนและท้าทายอย่างมาก แม้แต่บุคลากรทางการแพทย์ทั่วไปก็ยังไม่สามารถที่จะแปลผลการทดสอบเหล่านี้ได้ด้วยตนเอง เนื่องจากมีหลายปัจจัยที่ต้องพิจารณาอย่างรอบคอบ โดยเฉพาะอย่างยิ่งในบริบทของการวินิจฉัยโรคและการวางแผนการรักษา ในบทความนี้จะอธิบายเหตุผลที่ทำให้การแปลผลทดสอบทางพันธุกรรมไม่ใช่เรื่องง่ายอย่างที่เราคิดกันครับ พร้อมกับการพูดถึงเทคนิคต่างๆ ที่ใช้ในปัจจุบัน เช่น single gene Test หรือ muti-genes panel test, Whole Exome Sequencing (WES), และ Whole Genome Sequencing (WGS) ความซับซ้อนของข้อมูลพันธุกรรม 1. ความหลากหลายของยีนและความผิดปกติ ยีนแต่ละตัวในร่างกายของคนเรานั้นสามารถมีการกลายพันธุ์ได้หลายรูปแบบ ซึ่งส่งผลต่อความเสี่ยงในการเกิดโรคต่างๆ การตรวจสอบความผิดปกติทางพันธุกรรมจึงต้องใช้เทคนิคที่หลากหลาย เช่น การตรวจโครโมโซมอะเรย์ (Chromosomal Microarray Analysis) และการตรวจหายีนส์กลายพันธุ์ (Mutation...

เทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมสายยาว หรือ Long-Read Sequencing

เทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมสายยาว หรือ Long-Read Sequencing เทคโนโลยีการหาลำดับพันธุกรรมแบบ Long-Read หรือที่เรียกว่าการหาลำดับพันธุกรรมยุคที่สาม (Third-Generation Sequencing) เป็นการพัฒนาที่เปลี่ยนแปลงวงการจีโนมิกส์อย่างสำคัญ เทคโนโลยีนี้สามารถอ่าน DNA หรือ RNA ในรูปแบบที่ยาวต่อเนื่อง ซึ่งช่วยแก้ปัญหาที่พบในพื้นที่ที่ซับซ้อนหรือซ้ำกันในจีโนม เนื้อหานี้จะอธิบายพื้นฐานของเทคโนโลยีนี้ การทำงานเชิงเทคนิค และการใช้งานที่ทำให้เทคโนโลยีนี้มีความสำคัญในงานวิจัยสมัยใหม่ พื้นฐานของการหาลำดับพันธุกรรมแบบ Long-Read ในเทคโนโลยีการหาลำดับแบบ Short-Read แบบดั้งเดิม DNA หรือ RNA จะถูกแบ่งเป็นชิ้นส่วนขนาดเล็กและทำการหาลำดับทีละส่วน จากนั้นจึงนำมาประกอบกลับด้วยกระบวนการคำนวณ วิธีนี้อาจมีปัญหาเมื่อต้องจัดการกับพื้นที่ที่มีการซ้ำกันสูงหรือมีความซับซ้อน เทคโนโลยี Long-Read ช่วยแก้ปัญหานี้โดยการอ่านลำดับที่ยาวกว่า—บางครั้งยาวเกินกว่า 10,000 เบส—ซึ่งให้ข้อมูลที่ครอบคลุมและแม่นยำมากขึ้นสำหรับการวิเคราะห์จีโนม ปัจจุบันมีสองบริษัทหลักที่เป็นผู้นำในเทคโนโลยีนี้ ได้แก่: PacBio (Pacific Biosciences) : โดด...

Phamacogenomics คืออะไร

 Pharmacogenomics คืออะไร Pharmacogenomics หรือ เภสัชพันธุศาสตร์ เป็นศาสตร์ที่ผสมผสานระหว่างพันธุศาสตร์ (Genomics) และเภสัชวิทยา (Pharmacology) เพื่อศึกษาและทำความเข้าใจผลกระทบของพันธุกรรมต่อการตอบสนองต่อยาในแต่ละบุคคล เป้าหมายหลักคือการพัฒนาการรักษาที่มีประสิทธิภาพและปลอดภัยมากขึ้นโดยปรับให้เหมาะสมกับลักษณะทางพันธุกรรมของผู้ป่วยแต่ละราย หลักการของ Pharmacogenomics Pharmacogenomics อาศัยความรู้เกี่ยวกับลำดับ DNA และการแปรผันทางพันธุกรรม เช่น การเกิด Single Nucleotide Polymorphisms (SNPs) หรือการเปลี่ยนแปลงของยีนที่มีผลต่อการทำงานของเอนไซม์ เมแทบอลิซึม และโปรตีนที่เกี่ยวข้องกับการดูดซึม กระจายตัว และการกำจัดยา ยกตัวอย่างเช่น: ยีน CYP450 (Cytochrome P450): มีบทบาทสำคัญในการเผาผลาญยา เช่น CYP2D6, CYP3A4 และ CYP2C19 การแปรผันในยีนเหล่านี้อาจส่งผลต่อการเผาผลาญยาช้าหรือเร็วเกินไป ยีน VKORC1 และ CYP2C9: เกี่ยวข้องกับการตอบสนองต่อยาต้านการแข็งตัวของเลือด เช่น วาร์ฟาริน (Warfarin) HLA-B*57:01: การตรวจหายีนนี้ช่วยลดความเสี่ยงจากอาการแพ้ยา Abacavir ที่ใช้รักษา HIV ประโยชน์ของ Pharmacoge...