ข้ามไปที่เนื้อหาหลัก

ทำไมการแปลผลทดสอบทางพันธุกรรมถึงไม่ใช่เรื่องง่าย

"ทำไมการแปลผลทดสอบทางพันธุกรรมถึงไม่ใช่เรื่องง่าย"

ในปัจจุบันมีการนำเทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมที่ทันสมัยมาใช้มากขึ้นในประเทศไทย แต่การแปลผลทดสอบทางพันธุกรรมนั้นเป็นกระบวนการที่ซับซ้อนและท้าทายอย่างมาก แม้แต่บุคลากรทางการแพทย์ทั่วไปก็ยังไม่สามารถที่จะแปลผลการทดสอบเหล่านี้ได้ด้วยตนเอง เนื่องจากมีหลายปัจจัยที่ต้องพิจารณาอย่างรอบคอบ โดยเฉพาะอย่างยิ่งในบริบทของการวินิจฉัยโรคและการวางแผนการรักษา ในบทความนี้จะอธิบายเหตุผลที่ทำให้การแปลผลทดสอบทางพันธุกรรมไม่ใช่เรื่องง่ายอย่างที่เราคิดกันครับ พร้อมกับการพูดถึงเทคนิคต่างๆ ที่ใช้ในปัจจุบัน เช่น single gene Test หรือ muti-genes panel test, Whole Exome Sequencing (WES), และ Whole Genome Sequencing (WGS)

ความซับซ้อนของข้อมูลพันธุกรรม

1. ความหลากหลายของยีนและความผิดปกติ

ยีนแต่ละตัวในร่างกายของคนเรานั้นสามารถมีการกลายพันธุ์ได้หลายรูปแบบ ซึ่งส่งผลต่อความเสี่ยงในการเกิดโรคต่างๆ การตรวจสอบความผิดปกติทางพันธุกรรมจึงต้องใช้เทคนิคที่หลากหลาย เช่น การตรวจโครโมโซมอะเรย์ (Chromosomal Microarray Analysis) และการตรวจหายีนส์กลายพันธุ์ (Mutation Detection) ซึ่งแต่ละวิธีมีข้อดีและข้อจำกัดของตนเอง

2. การตีความผลลัพธ์

การแปลผลทดสอบทางพันธุกรรมไม่เพียงแค่การดูว่ามีหรือไม่มีความผิดปกติอย่างที่หลายคนเข้าใจครับ แต่ยังต้องพิจารณาถึงบริบทของข้อมูล เช่น ประวัติครอบครัว ประวัติทางการแพทย์ และข้อมูลจากฐานข้อมูลทางพันธุกรรมอื่น ๆ เพื่อให้ได้ข้อสรุปที่ถูกต้อง ผลลัพธ์บางอย่างอาจบ่งชี้ถึงความเสี่ยง แต่ไม่จำเป็นต้องหมายความว่าจะเกิดโรคนั้น ๆ เสมอไป ซึ่งทำให้การสื่อสารกับผู้ป่วยเป็นสิ่งสำคัญ จึงจำเป็นต้องมีการทำ genetic counselling เสมอ

เทคนิคในการทดสอบทางพันธุกรรม

Single Gene Test

การทดสอบนี้มุ่งเน้นไปที่การตรวจสอบยีนเฉพาะเจาะจง เช่น ยีน BRCA1 และ BRCA2 ที่เกี่ยวข้องกับมะเร็งเต้านมและรังไข่ การเลือกใช้เทคนิคนี้เหมาะสมในกรณีที่มีข้อมูลเกี่ยวกับยีนที่เกี่ยวข้องกับโรคชัดเจน โดยจะช่วยลดค่าใช้จ่ายในการตรวจ.

Whole Exome Sequencing (WES)

WES เป็นเทคนิคที่ตรวจสอบ exons ทั้งหมดในจีโนม ซึ่งเป็นส่วนที่เข้ารหัสโปรตีน การตรวจสอบนี้ช่วยให้สามารถค้นพบกลายพันธุ์ในยีนที่อาจไม่เคยถูกพิจารณาใน Single Gene Test ได้ ทำให้สามารถวิเคราะห์ความเสี่ยงของโรคได้อย่างครอบคลุมมากขึ้น

Whole Genome Sequencing (WGS)

WGS เป็นการตรวจสอบจีโนมทั้งหมด รวมถึงทั้ง exons และ introns ซึ่งช่วยให้สามารถค้นพบข้อมูลทางพันธุกรรมที่หลากหลายและซับซ้อนได้ โดย WGS สามารถให้ข้อมูลเชิงลึกเกี่ยวกับความเสี่ยงของโรคและความผิดปกติทางพันธุกรรมอื่น ๆ ที่อาจไม่เกี่ยวข้องโดยตรงกับอาการของผู้ป่วย. อย่างไรก็ตาม ข้อมูลที่ได้จาก WGS อาจมีความซับซ้อนในการตีความ เนื่องจากอาจพบลักษณะทางพันธุกรรมที่ไม่เคยได้รับรายงานมาก่อน

ปัจจัยที่ส่งผลต่อการแปลผล

1. ข้อมูลที่ไม่ครบถ้วน

ข้อมูลที่ได้จากการทดสอบอาจไม่สามารถอธิบายได้ทั้งหมด เนื่องจากมีลักษณะทางพันธุกรรมบางอย่างที่ถ่ายทอดแบบพิเศษ เช่น โรคที่เกิดจากการกลายพันธุ์ใหม่ (de novo mutations) ซึ่งอาจไม่พบในพ่อแม่

2. ความแตกต่างระหว่างประชากร

ลักษณะทางพันธุกรรมของประชากรแต่ละกลุ่มอาจแตกต่างกัน ทำให้ผลการทดสอบในกลุ่มหนึ่งไม่สามารถนำมาใช้กับกลุ่มอื่นได้โดยตรง. นอกจากนี้ ข้อมูลจากฐานข้อมูลขนาดใหญ่ที่มีอยู่ในปัจจุบัน ยังมีข้อจำกัดในการเข้าถึงข้อมูลจากประชากรที่หลากหลาย ทำให้การวิเคราะห์ผลลัพธ์ยิ่งซับซ้อนขึ้น

สรุป

การแปลผลทดสอบทางพันธุกรรมจึงเป็นกระบวนการที่ต้องใช้ความรู้และทักษะเฉพาะด้านอย่างสูง รวมถึงต้องมีการสื่อสารและทำงานร่วมกับผู้ป่วยอย่างใกล้ชิดเพื่อให้ได้ข้อมูลที่ถูกต้องและเหมาะสมที่สุดสำหรับการวินิจฉัยและวางแผนการรักษาในอนาคตครับ หากใครที่กำลังตัดสินใจเข้ารับบริการเป็นการส่วนตัวก็ควรจะศึกษาข้อมูลให้ครบถ้วน และมั่นใจว่าสถานบริการเหล่านั้นมีความเชี่ยวชาญจริงๆ นะครับ


https://www.researchgate.net/publication/318657906_Uses_of_Next-Generation_Sequencing_Technologies_for_the_Diagnosis_of_Primary_Immunodeficiencies/figures?lo=1&utm_medium=&utm_campaign=

https://medlineplus.gov/genetics/understanding/testing/types/

https://www.mayo.edu/research/centers-programs/center-individualized-medicine/patient-care/understanding-test-results

https://sanogenetics.com/resources/blog/the-principle-of-precision-why-navigating-the-nuances-in-genetic-test-interpretation-is-more-important-than-ever


#การแปลผลทดสอบทางพันธุกรรม #genetic

ความคิดเห็น

โพสต์ยอดนิยมจากบล็อกนี้

หลอดใส่เลือดมี่กี่ชนิด (tube เลือดมี่กี่ชนิด)

        หลาย ๆ ท่านอาจสงสัยนะครับว่าเวลามีนัดต้องไปพบแพทย์ และเมื่อถึงเวลาเจาะเลือด ทำไมถึงต้องเก็บเลือดเราไปทีละหลาย ๆ หลอดและในการนัดแต่ละครั้งก็มีการเจาะเลือดไปไม่เหมือนเดิมกับครั้งก่อน วันนี้เราจะมาทำความเข้าใจกันครับว่าหลอดใส่เลือดแต่ละแบบมีความแตกต่างกันอย่างไร         ปัจจุบันในทางการแพทย์หลอดสำหรับเก็บตัวอย่างเลือดนั้นถูกพัฒนามาหลายรูปแบบด้วยกัน เพื่อให้มีประสิทธิภาพสำหรับตรวจทางห้องปฏิบัติการรวมถึงระยะในการเก็บรักษาตัวอย่างเลือดให้มีความเหมาะสม และมีประสิทธิภาพสูงสุดตามวัตถุประสงค์ของการตรวจทางห้องปฏิบัติการครับ สำหรับในวันนี้จะพามาทำความรู้จักกับหลอดเลือดพื้นฐานที่ใช้ในการตรวจประจำของโรงพยาบาลโดยทั่วไปครับ  สิ่งที่อยู่ในหลอดเลือดแต่ละสี        สิ่งที่อยู่ข้างในหลอดเลือดสีต่าง ๆ คือ สารเคมีที่ป้องกันการแข็งตัวของเลือด (สารกันเลือดแข็ง) โดยในหลอดแต่ละสีก็จะมีสารกันเลือดแข็งคนละชนิดกันครับ ซึ่งสาเหตุที่ต้องใช้สารกันเลือดแข็งหลายชนิด ไม่สามารถใช้ชนิดเดียว หรือหลอดเดียวสำหรับารตรวจได้ทั้งหมดก็เพราะว่าส...

DNA ตอนที่ 1 : DNA คืออะไร และโครงสร้างของ DNA

สารพันธุกรรม (genetic materials) ห มายถึงสารที่ทำหน้าที่เก็บข้อมูลพื้นฐานของสิ่งมีชีวิตทั้งสิ่งมีชีวิตระดับโปรคาริโอต (prokaryote) และยูคาริโอต (eukaryote) โดยสารพันธุกรรมประกอบด้วย ดีเอ็นเอ (deoxyribonucleic acid หรือ DNA) และอาร์เอ็นเอ (ribonucleic acid หรือ RNA) การเก็บรักษาข้อมูลพื้นฐานของสิ่งมีชีวิตเกิดจากการเรียงลำดับของหน่อยย่อยที่สุดของ DNA และ RNA อย่างเป็นระเบียบและมีความหมาย ซึ่งหน่อยย่อยของดีเอ็นเอและอาร์เอ็นเอเราเรียกว่า นิวคลีโอไทด์ (nucleotide) สิ่งมีชีวิตจะทำการแปลรหัสข้อมูลนิวคลีโอไทด์เหล่านี้ออกมาเป็นโปรตีนเพื่อทำหน้าที่ต่าง ๆ ของเซลล์หรือร่างกายของสิ่งมีชีวิตต่อไปผ่านการทำงานร่วมกันตั้งแต่ DNA RNA ไปจนถึงขั้นตอนการสั่งเคราะห์โปรตีน อย่างไรก็ตามสิ่งมีชีวิตบางประเภทจะเก็บข้อมูลพื้นฐานของตัวเองในรูปแบบของ RNA เท่านั้น เช่นไวรัสในกลุ่มรีโทรไวรัส หรือที่เรารู้จักกันดีก็คือไวรัสโควิด ภาพที่ 1 แสดงโครงสร้างจำลองของ DNA ที่มาภาพ : http://becuo.com/red-dna-wallpaper   DNA (deoxyribonucleic acid )                  D...

โครงสร้างโปรตีน (Protein structure)

โครงสร้างโปรตีน (Protein structure)             โปรตีนคือสารชีวโมเลกุลขนาดใหญ่และมีโครงสร้างซับซ้อนเกิดจากหน่วยย่อยกรดอะมิโน (amino acid) จำนวนมากตั้งแต่หลักร้อยจนถึงหลักพันหน่วยมาต่อกันเกิดเป็นสายยาว (long chains) เรียกว่า polypeptide ซึ่งในสายหรือระหว่างสายของ polypeptide เองก็จะเกิดพันธะทางเคมีขึ้นได้ทำให้โปรตีนมีโครงสร้างที่แตกต่างกันออกไปและทำให้โปรตีนเองมีคุณสมบัติที่หลากหลายและโครงสร้างซับซ้อน             กรดอะมิโนเป็นหน่วยย่อย (monomer) ของโปรตีนซึ่งประกอบไปด้วยกรดอะมิโน 20 ชนิด โครงสร้างของกรดอะมิโนประกอบด้วย หมู่อะมิโน (NH 3 ) หมู่คาร์บอกซิล (COO - ) และหมู่ R หรือ side chain ที่จับอยู่กับ alpha carbon โดยกรดอะมิโนแต่ละชนิดจะมีโครงสร้างเหมือนกันจะแตกต่างกันเพียงแค่หมู่ R เท่านั้น กรดอะมิโนแต่ละตัวจะมีเชื่อมต่อกันโดยพันธะเพปไทด์ (peptide bond) ระหว่างหมู่คาร์บอกซิลและหมู่อะมิโน ดังนั้นสิ่งที่กำหนดคุณสมบัติของโปรตีน หน้าที่ของโปรตีน และโครงสร้างของโปรตีนก็คื...