หลักการของ Next Generation Sequencing (NGS)
Next Generation Sequencing (NGS) เป็นเทคโนโลยีที่ใช้ในการหาลำดับนิวคลีโอไทด์หรือเบสของดีเอ็นเอในปริมาณมากอย่างมีประสิทธิภาพ โดย NGS สามารถอ่านลำดับสารพันธุกรรมได้พร้อมกันในหลายตัวอย่าง ซึ่งเป็นการพัฒนาขึ้นจากเทคนิคการหาลำดับแบบเดิม เช่น Sanger sequencing ที่มีข้อจำกัดในด้านความเร็วและปริมาณข้อมูลที่สามารถประมวลผลได้ในแต่ละครั้ง
หลักการที่เป็นจุดเด่นของแต่ละยี่ห้อใน Next Generation Sequencing (NGS)
ปัจจุบันเทคโนโลยี Next Generation Sequencing (NGS) มีด้วยกันหลายแพลตฟอร์มที่ถูกคิดค้นพัฒนาขึ้นมาโดยบริษัทต่างๆ ซึ่งแต่ละแพลตฟอร์มมีจุดเด่นและหลักการทำงานที่แตกต่างกัน ดังนี้:
1. Illumina
• หลักการทำงาน: ใช้เทคนิค “sequencing by synthesis” ซึ่งจะมีการเพิ่มนิวคลีโอไทด์ที่มีฟลูออเรสเซนต์ในระหว่างการสังเคราะห์ดีเอ็นเอ โดยสามารถอ่านลำดับเบสได้พร้อมกันในปริมาณมาก (massive parallel sequencing) ทำให้สามารถจัดลำดับจีโนมได้อย่างรวดเร็วและมีประสิทธิภาพสูง
• จุดเด่น: มีความแม่นยำสูง และสามารถทำการวิเคราะห์หลายตัวอย่างพร้อมกัน (multiplexing) ทำให้เหมาะสำหรับการศึกษาโรคทางพันธุกรรมและการวิจัยทางชีววิทยา
2. Thermo Fisher Scientific (Ion Torrent)
• หลักการทำงาน: ใช้เทคนิค “semiconductor sequencing” ซึ่งวัดการปล่อยไฮโดรเจนไอออนเมื่อมีการเพิ่มนิวคลีโอไทด์ในระหว่างการสังเคราะห์ดีเอ็นเอ โดยไม่ต้องใช้ฟลูออเรสเซนต์.
• จุดเด่น: มีความเร็วในการวิเคราะห์สูงและสามารถจัดลำดับได้ในเวลาที่สั้นกว่าแพลตฟอร์มอื่นๆ เหมาะสำหรับการใช้งานในห้องปฏิบัติการที่ต้องการผลลัพธ์อย่างรวดเร็ว
3. BGI (Beijing Genomics Institute)
• หลักการทำงาน: ใช้เทคนิค “DNBSEQ” ซึ่งเป็นการใช้ DNA nanoball ในการสร้าง library และจัดลำดับเบส โดยมีประสิทธิภาพสูงในการประมวลผลข้อมูล
• จุดเด่น: มีค่าใช้จ่ายต่ำต่อข้อมูลที่ได้ และสามารถประมวลผลข้อมูลจำนวนมากได้อย่างรวดเร็ว ทำให้เหมาะสำหรับโครงการวิจัยขนาดใหญ่
ขั้นตอนการทำงานของ NGS
NGS ประกอบด้วยหลายขั้นตอนที่สำคัญ ได้แก่:
1. การเตรียมตัวอย่าง (Sample Preparation): เริ่มต้นด้วยการสกัดดีเอ็นเอหรืออาร์เอ็นเอจากตัวอย่างที่ต้องการศึกษา
2. การสร้าง Sequencing Library (Library Construction): ตัวอย่างดีเอ็นเอจะถูกตัดเป็นชิ้นเล็กๆ และทำการเพิ่ม Adapter sequences เพื่อให้สามารถนำไปใช้ในกระบวนการถัดไปได้
3. Clonal Amplification: การเพิ่มปริมาณของดีเอ็นเอที่เตรียมไว้บน solid surface เพื่อให้สามารถตรวจวัดได้
4. Sequencing: การหาลำดับเบสทั้งหมดใน library โดยใช้เทคนิค “sequencing by synthesis” ซึ่งจะทำให้สามารถอ่านลำดับเบสได้พร้อมกันในปริมาณมาก
5. การวิเคราะห์ข้อมูล (Data Analysis): ข้อมูลที่ได้จะถูกประมวลผลด้วยวิธีทางชีวสารสนเทศเพื่อหาความแตกต่างทางพันธุกรรมและวิเคราะห์ความหมายของข้อมูลที่ได้
ประโยชน์และการประยุกต์ใช้ NGS
NGS มีการประยุกต์ใช้อย่างกว้างขวางในหลายสาขา เช่น:
• Whole Genome Sequencing (WGS): การจัดลำดับจีโนมทั้งหมดเพื่อศึกษาความหลากหลายทางพันธุกรรม
• Whole Exome Sequencing (WES): การศึกษาส่วนที่มีการแสดงออกทางพันธุกรรม โดยมุ่งเน้นเฉพาะบริเวณที่มีความสำคัญในการสร้างโปรตีน
• RNA Sequencing: การศึกษาลำดับอาร์เอ็นเอเพื่อเข้าใจการแสดงออกของยีน
• Metagenomics: การศึกษาความหลากหลายทางพันธุกรรมของจุลินทรีย์ในตัวอย่างสิ่งแวดล้อม
สรุป
Next Generation Sequencing (NGS) เป็นเทคโนโลยีที่เปลี่ยนแปลงวิธีการศึกษาและวิเคราะห์ข้อมูลทางพันธุกรรม โดยสามารถให้ข้อมูลที่มีความละเอียดสูงและรวดเร็ว ทำให้เป็นเครื่องมือสำคัญในการวิจัยทางชีววิทยา การแพทย์ และด้านอื่นๆ ที่เกี่ยวข้องกับพันธุศาสตร์และพันธุวิศวกรรม.
ความคิดเห็น
แสดงความคิดเห็น