ข้ามไปที่เนื้อหาหลัก

หลักการตรวจวิเคราะห์ของ NIPT ด้วย NGS

หลักการตรวจวิเคราะห์ของ NIPT ด้วย NGS

การตรวจคัดกรองความผิดปกติของโครโมโซมก่อนคลอดโดยใช้เทคโนโลยีการตรวจหาดีเอ็นเอของทารกจากเลือดมารดา หรือที่เรียกว่า Non-Invasive Prenatal Testing (NIPT) เป็นเทคนิคที่ทันสมัยและมีความแม่นยำสูง NIPT อาศัยเทคโนโลยี Next-Generation Sequencing (NGS) ในการตรวจวิเคราะห์ความผิดปกติของโครโมโซมของทารกจาก cell-free fetal DNA (cffDNA) ที่อยู่ในกระแสเลือดของมารดา

หลักการของ NIPT ด้วย NGS

1. การเก็บตัวอย่างและเตรียมดีเอ็นเอ

ตัวอย่างเลือดของมารดาจะถูกเก็บในหลอดเฉพาะที่ช่วยรักษาคุณภาพของ cffDNA หลังจากนั้นเลือดจะถูกปั่นแยกพลาสมาออกมา และทำการสกัด cell-free DNA (cfDNA) ซึ่งเป็นส่วนผสมระหว่างดีเอ็นเอของมารดาและทารก

การแยก cfDNA ของมารดาและทารกออกจากกัน

  • cfDNA ของทารก (cffDNA) มักจะมีขนาดสั้นกว่า cfDNA ของมารดา โดยทั่วไป cffDNA มีขนาดประมาณ 140-160 bp ในขณะที่ cfDNA ของมารดาจะมีขนาดใหญ่กว่า (มากกว่า 160 bp)

  • สามารถใช้เทคนิค Size Selection เพื่อเลือกเฉพาะชิ้นดีเอ็นเอที่มีขนาดสั้นเพื่อเพิ่มความแม่นยำของการตรวจ

  • นอกจากนี้ ยังสามารถใช้วิธีการคำนวณสัดส่วนของ cfDNA โดยเปรียบเทียบลำดับเบสที่มีลักษณะเฉพาะของโครโมโซมของทารก ซึ่งแตกต่างจากของมารดา

2. การเตรียมห้องสมุดดีเอ็นเอ (Library Preparation)

ดีเอ็นเอที่สกัดได้จะถูกนำมาเตรียมห้องสมุดโดยกระบวนการที่รวมถึง:

  • การตัดดีเอ็นเอให้มีขนาดที่เหมาะสม

  • การเติมส่วนท้ายของดีเอ็นเอด้วย adapters และ barcodes เพื่อให้สามารถนำไปวิเคราะห์ด้วย NGS

3. การหาลำดับดีเอ็นเอด้วย NGS

NGS เป็นเทคนิคที่สามารถอ่านลำดับดีเอ็นเอจำนวนมากได้ในเวลาเดียวกัน โดยทั่วไป NIPT จะใช้ whole genome sequencing (WGS) หรือ targeted sequencing ขึ้นอยู่กับแพลตฟอร์มที่ใช้ โดยกระบวนการมีดังนี้:

  1. การสร้างคลัสเตอร์ของดีเอ็นเอ บน flow cell

  2. การหาลำดับเบส โดยใช้หลักการของ sequencing-by-synthesis

  3. การตรวจสอบคุณภาพของข้อมูลที่ได้

4. การวิเคราะห์ข้อมูลทางชีวสารสนเทศ

ข้อมูลลำดับดีเอ็นเอที่ได้จะถูกนำมาวิเคราะห์ด้วยอัลกอริธึมเฉพาะเพื่อประเมินปริมาณของแต่ละโครโมโซมใน cfDNA โดยเปรียบเทียบกับฐานข้อมูลอ้างอิง หากพบว่าปริมาณของโครโมโซมใดผิดปกติ เช่น โครโมโซม 21 มีปริมาณเพิ่มขึ้น อาจบ่งชี้ถึงภาวะดาวน์ซินโดรม (Trisomy 21) นอกจากนี้ ยังสามารถตรวจพบ Trisomy 18 (Edward syndrome), Trisomy 13 (Patau syndrome) และความผิดปกติของโครโมโซมเพศได้

หลักการที่ใช้ในการตรวจเฉพาะโครโมโซม 13, 18, และ 21

  • การใช้ shotgun sequencing ทำให้สามารถวิเคราะห์ปริมาณ cfDNA ที่มาจากแต่ละโครโมโซมได้

  • การคำนวณอัตราส่วนของลำดับเบสที่มาจากโครโมโซมเป้าหมาย (เช่น chr13, chr18, chr21) เทียบกับโครโมโซมอ้างอิง

  • หากพบว่าปริมาณดีเอ็นเอจากโครโมโซมเหล่านี้สูงกว่าปกติ อาจเป็นสัญญาณของ Trisomy

  • เทคนิค targeted sequencing สามารถใช้ probe ที่ออกแบบมาเพื่อจับกับเฉพาะโครโมโซมที่ต้องการตรวจ เพื่อเพิ่มความแม่นยำของการวิเคราะห์

5. การแปลผลและการรายงานผล

ผลการวิเคราะห์จะถูกรายงานในรูปแบบของค่าความเสี่ยง เช่น z-score หรือ fetal fraction โดยต้องพิจารณาถึงข้อจำกัดต่าง ๆ เช่น อัตราส่วนของ fetal fraction ในตัวอย่างเลือดมารดา หากต่ำกว่า 4% อาจทำให้การตรวจวิเคราะห์มีความแม่นยำน้อยลง นอกจากนี้ยังต้องอาศัยการยืนยันผลด้วยวิธีอื่น เช่น Amniocentesis หรือ CVS หากผลตรวจบ่งชี้ความผิดปกติ

ข้อดีและข้อจำกัดของ NIPT ด้วย NGS

ข้อดี:

  • มีความแม่นยำสูง โดยเฉพาะในกรณีของ Trisomy 21

  • เป็นการตรวจที่ไม่รุกล้ำ ปลอดภัยต่อมารดาและทารก

  • สามารถตรวจได้ตั้งแต่อายุครรภ์ 10 สัปดาห์ขึ้นไป

ข้อจำกัด:

  • อาจให้ผลบวกลวงหรือผลลบลวงในบางกรณี เช่น กรณีของ vanishing twin

  • ไม่สามารถตรวจหาความผิดปกติของโครงสร้างโครโมโซมได้ละเอียดเท่ากับการทำ karyotyping หรือ chromosomal microarray

  • ค่าใช้จ่ายสูงกว่าการตรวจคัดกรองแบบเดิม

สรุป

NIPT ที่ใช้ NGS เป็นเทคนิคที่ช่วยให้สามารถตรวจคัดกรองความผิดปกติของโครโมโซมของทารกได้อย่างแม่นยำและปลอดภัย โดยอาศัยการวิเคราะห์ cfDNA จากเลือดมารดา แม้ว่าจะมีข้อจำกัดบางประการ แต่ถือเป็นหนึ่งในวิธีการตรวจที่มีศักยภาพสูงและได้รับการยอมรับอย่างกว้างขวางในปัจจุบัน 

ความคิดเห็น

โพสต์ยอดนิยมจากบล็อกนี้

หลอดใส่เลือดมี่กี่ชนิด (tube เลือดมี่กี่ชนิด)

        หลาย ๆ ท่านอาจสงสัยนะครับว่าเวลามีนัดต้องไปพบแพทย์ และเมื่อถึงเวลาเจาะเลือด ทำไมถึงต้องเก็บเลือดเราไปทีละหลาย ๆ หลอดและในการนัดแต่ละครั้งก็มีการเจาะเลือดไปไม่เหมือนเดิมกับครั้งก่อน วันนี้เราจะมาทำความเข้าใจกันครับว่าหลอดใส่เลือดแต่ละแบบมีความแตกต่างกันอย่างไร         ปัจจุบันในทางการแพทย์หลอดสำหรับเก็บตัวอย่างเลือดนั้นถูกพัฒนามาหลายรูปแบบด้วยกัน เพื่อให้มีประสิทธิภาพสำหรับตรวจทางห้องปฏิบัติการรวมถึงระยะในการเก็บรักษาตัวอย่างเลือดให้มีความเหมาะสม และมีประสิทธิภาพสูงสุดตามวัตถุประสงค์ของการตรวจทางห้องปฏิบัติการครับ สำหรับในวันนี้จะพามาทำความรู้จักกับหลอดเลือดพื้นฐานที่ใช้ในการตรวจประจำของโรงพยาบาลโดยทั่วไปครับ  สิ่งที่อยู่ในหลอดเลือดแต่ละสี        สิ่งที่อยู่ข้างในหลอดเลือดสีต่าง ๆ คือ สารเคมีที่ป้องกันการแข็งตัวของเลือด (สารกันเลือดแข็ง) โดยในหลอดแต่ละสีก็จะมีสารกันเลือดแข็งคนละชนิดกันครับ ซึ่งสาเหตุที่ต้องใช้สารกันเลือดแข็งหลายชนิด ไม่สามารถใช้ชนิดเดียว หรือหลอดเดียวสำหรับารตรวจได้ทั้งหมดก็เพราะว่าส...

DNA ตอนที่ 1 : DNA คืออะไร และโครงสร้างของ DNA

สารพันธุกรรม (genetic materials) ห มายถึงสารที่ทำหน้าที่เก็บข้อมูลพื้นฐานของสิ่งมีชีวิตทั้งสิ่งมีชีวิตระดับโปรคาริโอต (prokaryote) และยูคาริโอต (eukaryote) โดยสารพันธุกรรมประกอบด้วย ดีเอ็นเอ (deoxyribonucleic acid หรือ DNA) และอาร์เอ็นเอ (ribonucleic acid หรือ RNA) การเก็บรักษาข้อมูลพื้นฐานของสิ่งมีชีวิตเกิดจากการเรียงลำดับของหน่อยย่อยที่สุดของ DNA และ RNA อย่างเป็นระเบียบและมีความหมาย ซึ่งหน่อยย่อยของดีเอ็นเอและอาร์เอ็นเอเราเรียกว่า นิวคลีโอไทด์ (nucleotide) สิ่งมีชีวิตจะทำการแปลรหัสข้อมูลนิวคลีโอไทด์เหล่านี้ออกมาเป็นโปรตีนเพื่อทำหน้าที่ต่าง ๆ ของเซลล์หรือร่างกายของสิ่งมีชีวิตต่อไปผ่านการทำงานร่วมกันตั้งแต่ DNA RNA ไปจนถึงขั้นตอนการสั่งเคราะห์โปรตีน อย่างไรก็ตามสิ่งมีชีวิตบางประเภทจะเก็บข้อมูลพื้นฐานของตัวเองในรูปแบบของ RNA เท่านั้น เช่นไวรัสในกลุ่มรีโทรไวรัส หรือที่เรารู้จักกันดีก็คือไวรัสโควิด ภาพที่ 1 แสดงโครงสร้างจำลองของ DNA ที่มาภาพ : http://becuo.com/red-dna-wallpaper   DNA (deoxyribonucleic acid )                  D...

โครงสร้างโปรตีน (Protein structure)

โครงสร้างโปรตีน (Protein structure)             โปรตีนคือสารชีวโมเลกุลขนาดใหญ่และมีโครงสร้างซับซ้อนเกิดจากหน่วยย่อยกรดอะมิโน (amino acid) จำนวนมากตั้งแต่หลักร้อยจนถึงหลักพันหน่วยมาต่อกันเกิดเป็นสายยาว (long chains) เรียกว่า polypeptide ซึ่งในสายหรือระหว่างสายของ polypeptide เองก็จะเกิดพันธะทางเคมีขึ้นได้ทำให้โปรตีนมีโครงสร้างที่แตกต่างกันออกไปและทำให้โปรตีนเองมีคุณสมบัติที่หลากหลายและโครงสร้างซับซ้อน             กรดอะมิโนเป็นหน่วยย่อย (monomer) ของโปรตีนซึ่งประกอบไปด้วยกรดอะมิโน 20 ชนิด โครงสร้างของกรดอะมิโนประกอบด้วย หมู่อะมิโน (NH 3 ) หมู่คาร์บอกซิล (COO - ) และหมู่ R หรือ side chain ที่จับอยู่กับ alpha carbon โดยกรดอะมิโนแต่ละชนิดจะมีโครงสร้างเหมือนกันจะแตกต่างกันเพียงแค่หมู่ R เท่านั้น กรดอะมิโนแต่ละตัวจะมีเชื่อมต่อกันโดยพันธะเพปไทด์ (peptide bond) ระหว่างหมู่คาร์บอกซิลและหมู่อะมิโน ดังนั้นสิ่งที่กำหนดคุณสมบัติของโปรตีน หน้าที่ของโปรตีน และโครงสร้างของโปรตีนก็คื...