ข้ามไปที่เนื้อหาหลัก

Digital PCR และหลักการตรวจ NIPT

 Digital PCR และหลักการตรวจ NIPT

Digital PCR (dPCR) เป็นเทคนิคที่พัฒนามาจาก Polymerase Chain Reaction (PCR) แบบดั้งเดิม โดยมีความสามารถในการตรวจจับและวัดปริมาณกรดนิวคลีอิก (DNA หรือ RNA) ได้อย่างแม่นยำและละเอียดกว่าการทำ quantitative PCR (qPCR) เทคนิคนี้เหมาะสำหรับการวิเคราะห์ตัวอย่างที่มีปริมาณน้อย หรือมีเป้าหมายที่ต้องการวัดอยู่ในระดับต่ำมาก หนึ่งในการประยุกต์ใช้ที่สำคัญของ dPCR คือการตรวจคัดกรองความผิดปกติของทารกในครรภ์แบบไม่รุกล้ำ หรือ Non-Invasive Prenatal Testing (NIPT)

หลักการทำงานของ Digital PCR

Digital PCR มีหลักการทำงานโดยการแบ่งตัวอย่าง DNA หรือ cDNA ออกเป็นจำนวนมากของไมโครรีแอคชัน (microreaction) หรือดรอปเล็ต (droplet) แต่ละรีแอคชันจะทำปฏิกิริยา PCR แยกจากกันเป็นอิสระ และมีเพียง DNA เป้าหมายเดียวในแต่ละรีแอคชัน ผลลัพธ์จะถูกวิเคราะห์แบบไบนารี (Binary Analysis) คือ มีสัญญาณ (positive) หรือไม่มีสัญญาณ (negative) จากนั้นใช้สถิติ Poisson ในการคำนวณปริมาณของ DNA เป้าหมายที่แท้จริง

หลักการตรวจ NIPT ด้วย Digital PCR

NIPT อาศัยการตรวจสอบเซลล์ฟรี DNA (cfDNA) ที่อยู่ในกระแสเลือดของมารดา โดย cfDNA ประกอบด้วย DNA จากทั้งมารดาและทารก ซึ่งสามารถแยกออกจากกันได้โดยวิธีทางชีวสารสนเทศหรือการวิเคราะห์อัตราส่วนของโครโมโซมเป้าหมาย เทคโนโลยี dPCR ช่วยให้สามารถตรวจจับความผิดปกติของโครโมโซม เช่น ไตรโซมี 13, 18 และ 21 ได้อย่างแม่นยำ

ขั้นตอนการตรวจ NIPT ด้วย Digital PCR

  1. เก็บตัวอย่างเลือดมารดา

    • ใช้หลอดเก็บเลือดเฉพาะที่ป้องกันการเสื่อมสลายของ cfDNA

    • แยกพลาสมาออกจากเซลล์เม็ดเลือดโดยการปั่นเหวี่ยงความเร็วสูง

  2. สกัด cfDNA

    • ใช้ชุดสกัด DNA ที่ออกแบบมาสำหรับ cfDNA โดยเฉพาะ เพื่อให้ได้ DNA ที่บริสุทธิ์และสมบูรณ์

  3. แบ่ง cfDNA ออกเป็นไมโครรีแอคชัน

    • cfDNA ที่สกัดได้จะถูกนำไปแบ่งออกเป็นไมโครรีแอคชันขนาดเล็ก (ดรอปเล็ตหรือช่องไมโครฟลูอิดิกส์)

  4. ทำ PCR แบบดิจิทัล

    • เพิ่มสารทำปฏิกิริยา PCR พร้อมโพรบที่จับกับโครโมโซมที่ต้องการตรวจสอบ เช่น โครโมโซม 13, 18, และ 21

    • ขยาย DNA โดยใช้เทอร์โมไซเคลเลอร์ที่เหมาะสมกับ dPCR

  5. วิเคราะห์ผล

    • อ่านผลลัพธ์ด้วยเครื่องอ่านสัญญาณฟลูออเรสเซนซ์

    • วิเคราะห์จำนวนไมโครรีแอคชันที่ให้สัญญาณบวกและลบ

    • ใช้สถิติ Poisson ในการคำนวณอัตราส่วนของโครโมโซมเป้าหมาย เปรียบเทียบกับค่าปกติเพื่อตรวจหาความผิดปกติ

ข้อดีของการใช้ Digital PCR ในการตรวจ NIPT

  • ความแม่นยำสูง: สามารถตรวจพบการเพิ่มขึ้นของโครโมโซมเป้าหมายเพียงเล็กน้อยได้อย่างชัดเจน

  • ความไวสูง: ตรวจจับ DNA ของทารกที่มีปริมาณน้อยได้ดี

  • ลดอัตราผลบวกลวง: มีโอกาสเกิดข้อผิดพลาดจากตัวอย่างปนเปื้อนหรือความแปรปรวนทางเทคนิคต่ำ

  • สามารถวิเคราะห์เฉพาะเจาะจงได้: สามารถออกแบบโพรบเพื่อจับกับยีนหรือบริเวณที่ต้องการตรวจสอบโดยเฉพาะ

การประยุกต์ใช้ Digital PCR ใน NIPT

  1. การตรวจคัดกรองไตรโซมี

    • ตรวจจับภาวะไตรโซมีของโครโมโซม 13, 18 และ 21 ซึ่งเป็นสาเหตุของกลุ่มอาการ Patau, Edwards และ Down ตามลำดับ

  2. การตรวจโรคทางพันธุกรรมที่เกี่ยวข้องกับการกลายพันธุ์แบบจุด

    • สามารถใช้ dPCR เพื่อตรวจหาโรคทางพันธุกรรมที่เกิดจากการกลายพันธุ์ของยีนเดี่ยว เช่น เบต้าธาลัสซีเมีย หรือโรคฮีโมฟีเลีย

  3. การตรวจเพศของทารก

    • ตรวจหาโครโมโซม Y ใน cfDNA ของมารดาเพื่อตรวจเพศของทารก

  4. การวิเคราะห์โมเสกิซึม (Mosaicism) ในทารก

    • Digital PCR สามารถตรวจพบเซลล์ที่มีจำนวนโครโมโซมผิดปกติบางส่วน ซึ่งอาจบ่งชี้ถึงภาวะโมเสกิซึม

สรุป

Digital PCR เป็นเทคนิคที่มีความแม่นยำสูงและเหมาะสมสำหรับการตรวจ NIPT เนื่องจากสามารถตรวจวัดปริมาณ cfDNA ได้อย่างละเอียด และช่วยลดข้อผิดพลาดที่เกิดจากปัจจัยรบกวนต่าง ๆ การใช้ dPCR ใน NIPT สามารถช่วยเพิ่มความแม่นยำในการตรวจคัดกรองความผิดปกติของทารกในครรภ์ และช่วยให้แพทย์สามารถให้คำแนะนำแก่ผู้ป่วยได้อย่างถูกต้องและรวดเร็ว

ความคิดเห็น

โพสต์ยอดนิยมจากบล็อกนี้

หลอดใส่เลือดมี่กี่ชนิด (tube เลือดมี่กี่ชนิด)

        หลาย ๆ ท่านอาจสงสัยนะครับว่าเวลามีนัดต้องไปพบแพทย์ และเมื่อถึงเวลาเจาะเลือด ทำไมถึงต้องเก็บเลือดเราไปทีละหลาย ๆ หลอดและในการนัดแต่ละครั้งก็มีการเจาะเลือดไปไม่เหมือนเดิมกับครั้งก่อน วันนี้เราจะมาทำความเข้าใจกันครับว่าหลอดใส่เลือดแต่ละแบบมีความแตกต่างกันอย่างไร         ปัจจุบันในทางการแพทย์หลอดสำหรับเก็บตัวอย่างเลือดนั้นถูกพัฒนามาหลายรูปแบบด้วยกัน เพื่อให้มีประสิทธิภาพสำหรับตรวจทางห้องปฏิบัติการรวมถึงระยะในการเก็บรักษาตัวอย่างเลือดให้มีความเหมาะสม และมีประสิทธิภาพสูงสุดตามวัตถุประสงค์ของการตรวจทางห้องปฏิบัติการครับ สำหรับในวันนี้จะพามาทำความรู้จักกับหลอดเลือดพื้นฐานที่ใช้ในการตรวจประจำของโรงพยาบาลโดยทั่วไปครับ  สิ่งที่อยู่ในหลอดเลือดแต่ละสี        สิ่งที่อยู่ข้างในหลอดเลือดสีต่าง ๆ คือ สารเคมีที่ป้องกันการแข็งตัวของเลือด (สารกันเลือดแข็ง) โดยในหลอดแต่ละสีก็จะมีสารกันเลือดแข็งคนละชนิดกันครับ ซึ่งสาเหตุที่ต้องใช้สารกันเลือดแข็งหลายชนิด ไม่สามารถใช้ชนิดเดียว หรือหลอดเดียวสำหรับารตรวจได้ทั้งหมดก็เพราะว่าส...

DNA ตอนที่ 1 : DNA คืออะไร และโครงสร้างของ DNA

สารพันธุกรรม (genetic materials) ห มายถึงสารที่ทำหน้าที่เก็บข้อมูลพื้นฐานของสิ่งมีชีวิตทั้งสิ่งมีชีวิตระดับโปรคาริโอต (prokaryote) และยูคาริโอต (eukaryote) โดยสารพันธุกรรมประกอบด้วย ดีเอ็นเอ (deoxyribonucleic acid หรือ DNA) และอาร์เอ็นเอ (ribonucleic acid หรือ RNA) การเก็บรักษาข้อมูลพื้นฐานของสิ่งมีชีวิตเกิดจากการเรียงลำดับของหน่อยย่อยที่สุดของ DNA และ RNA อย่างเป็นระเบียบและมีความหมาย ซึ่งหน่อยย่อยของดีเอ็นเอและอาร์เอ็นเอเราเรียกว่า นิวคลีโอไทด์ (nucleotide) สิ่งมีชีวิตจะทำการแปลรหัสข้อมูลนิวคลีโอไทด์เหล่านี้ออกมาเป็นโปรตีนเพื่อทำหน้าที่ต่าง ๆ ของเซลล์หรือร่างกายของสิ่งมีชีวิตต่อไปผ่านการทำงานร่วมกันตั้งแต่ DNA RNA ไปจนถึงขั้นตอนการสั่งเคราะห์โปรตีน อย่างไรก็ตามสิ่งมีชีวิตบางประเภทจะเก็บข้อมูลพื้นฐานของตัวเองในรูปแบบของ RNA เท่านั้น เช่นไวรัสในกลุ่มรีโทรไวรัส หรือที่เรารู้จักกันดีก็คือไวรัสโควิด ภาพที่ 1 แสดงโครงสร้างจำลองของ DNA ที่มาภาพ : http://becuo.com/red-dna-wallpaper   DNA (deoxyribonucleic acid )                  D...

โครงสร้างโปรตีน (Protein structure)

โครงสร้างโปรตีน (Protein structure)             โปรตีนคือสารชีวโมเลกุลขนาดใหญ่และมีโครงสร้างซับซ้อนเกิดจากหน่วยย่อยกรดอะมิโน (amino acid) จำนวนมากตั้งแต่หลักร้อยจนถึงหลักพันหน่วยมาต่อกันเกิดเป็นสายยาว (long chains) เรียกว่า polypeptide ซึ่งในสายหรือระหว่างสายของ polypeptide เองก็จะเกิดพันธะทางเคมีขึ้นได้ทำให้โปรตีนมีโครงสร้างที่แตกต่างกันออกไปและทำให้โปรตีนเองมีคุณสมบัติที่หลากหลายและโครงสร้างซับซ้อน             กรดอะมิโนเป็นหน่วยย่อย (monomer) ของโปรตีนซึ่งประกอบไปด้วยกรดอะมิโน 20 ชนิด โครงสร้างของกรดอะมิโนประกอบด้วย หมู่อะมิโน (NH 3 ) หมู่คาร์บอกซิล (COO - ) และหมู่ R หรือ side chain ที่จับอยู่กับ alpha carbon โดยกรดอะมิโนแต่ละชนิดจะมีโครงสร้างเหมือนกันจะแตกต่างกันเพียงแค่หมู่ R เท่านั้น กรดอะมิโนแต่ละตัวจะมีเชื่อมต่อกันโดยพันธะเพปไทด์ (peptide bond) ระหว่างหมู่คาร์บอกซิลและหมู่อะมิโน ดังนั้นสิ่งที่กำหนดคุณสมบัติของโปรตีน หน้าที่ของโปรตีน และโครงสร้างของโปรตีนก็คื...