ข้ามไปที่เนื้อหาหลัก

เทคนิคการตรวจ chromosome array คืออะไร

Chromosome Array (Chromosomal Microarray Analysis: CMA)

    เทคนิคการตรวจโครโมรโซมอาร์เรย์ หรือ Chromosome Array (CMA) เป็นเทคนิคทางพันธุศาสตร์ระดับสูงที่กลายเป็นมาตรฐานหลักในการวินิจฉัยความผิดปกติของโครโมโซมที่ไม่สามารถตรวจพบได้ด้วยวิธีการแบบดั้งเดิม CMA ได้รับการพัฒนาในช่วงปลายทศวรรษ 1990 และในช่วงต้นทศวรรษที่ 21 ได้เข้ามาแทนที่ Karyotyping อย่างรวดเร็วในฐานะ เครื่องมือวินิจฉัยทางพันธุกรรมขั้นต้น (First-tier diagnostic test) สำหรับผู้ป่วยที่มีภาวะพัฒนาการช้า/ปัญญาอ่อน (Developmental Delay/Intellectual Disability), ภาวะออทิซึม (Autism Spectrum Disorder), หรือความผิดปกติแต่กำเนิดหลายอย่าง (Multiple Congenital Anomalies) ที่ไม่ทราบสาเหตุ

หลักการ

Chromosomal Microarray Analysis (CMA) หรือเรียกอีกอย่างว่า Array Comparative Genomic Hybridization (aCGH) เป็นเทคโนโลยีที่ใช้วิเคราะห์ ปริมาณสำเนาของสารพันธุกรรม (Copy Number Variations: CNVs) ทั่วทั้งจีโนม (Genome) โดยเฉพาะอย่างยิ่งการขาดหาย (Deletion) หรือการเพิ่มขึ้น (Duplication) ของชิ้นส่วน DNA ขนาดเล็ก ซึ่งเทคนิคดั้งเดิมอย่าง Karyotyping (การวิเคราะห์โครโมโซมด้วยกล้องจุลทรรศน์) ไม่สามารถตรวจจับได้ มีลักษณะเด่นดังนี้

ความละเอียดสูง (High Resolution): CMA สามารถตรวจจับความผิดปกติที่มีขนาดเล็กตั้งแต่ 1,000 คู่เบส (1 kb) ไปจนถึงหลายล้านคู่เบส ซึ่งละเอียดกว่า Karyotyping หลายร้อยเท่า

Copy Number Variants (CNVs): ความผิดปกติที่ CMA ตรวจจับได้นี้เรียกว่า CNVs ซึ่งรวมถึงความผิดปกติที่ทราบว่าก่อโรคและที่ยังไม่ทราบความสำคัญทางคลินิก (Variants of Uncertain Significance: VUS)

ประเภทของ Chromosome Array

CMA แบ่งตามการออกแบบโพรบ (Probe Design) และการครอบคลุมของจีโนม (Genome Coverage)

1. Array CGH (aCGH)
เป็นรูปแบบดั้งเดิมที่เน้นการตรวจหา CNVs โดยเฉพาะ ใช้โพรบที่ครอบคลุมพื้นที่ทั่วทั้งจีโนม หรือมุ่งเน้นบริเวณที่มีความสำคัญทางคลินิก เทคนิคนี้อาศัยการเปรียบเทียบ DNA ของผู้ป่วยกับ DNA อ้างอิง (Reference DNA)


2. SNP Array (Single Nucleotide Polymorphism Array)
เป็นรูปแบบที่พัฒนาขึ้นมา ใช้โพรบที่ตรวจจับ ความแตกต่างของเบสเดี่ยว (SNP) ร่วมกับการตรวจ CNVs

ข้อได้เปรียบเพิ่มเติม: สามารถตรวจจับภาวะ Uniparental Disomy (UPD) (การที่คนได้รับโครโมโซมทั้งคู่มาจากพ่อหรือแม่ฝ่ายเดียว) และ Areas of Homozygosity (AOH) (บริเวณที่มีข้อมูลพันธุกรรมเหมือนกันจากทั้งสองโครโมโซมคู่ ซึ่งอาจบ่งชี้ถึงความสัมพันธ์ทางสายเลือดใกล้ชิดของพ่อแม่) ซึ่งเป็นสาเหตุของโรคทางพันธุกรรมบางชนิดได้

สิ่งที่ CMA ตรวจพบได้และไม่ได้

ตรวจพบได้
- การขาดหาย/การเพิ่มจำนวน (Deletion/Duplication) - CNVs  ถือ เป็นจุดแข็งหลักของ CMA ตรวจพบได้แม้ขนาดเล็กมาก (Submicroscopic)
- ความผิดปกติเชิงปริมาณของโครโมโซม (Aneuploidy) เช่น Trisomy 21 (ดาวน์ซินโดรม)

ตรวจพบไม่ได้
- การกลับด้าน (Inversion) โครงสร้างเปลี่ยนแต่ปริมาณ DNA ไม่เปลี่ยน
- การย้ายที่แบบสมดุล (Balanced Translocation) โครโมโซมแลกเปลี่ยนชิ้นส่วนกันแต่ไม่มีการเพิ่มหรือลดของ DNA 
- สุทธิจุดกลายพันธุ์ (Point Mutations) ต้องใช้เทคนิคการหาลำดับเบส (Sequencing)

การประยุกต์ใช้ทางคลินิก (Current Standard of Care)

CMA ถูกนำมาใช้ในหลายบริบททางคลินิก และถือเป็นเครื่องมือวินิจฉัยหลักสำหรับหลายเงื่อนไข

การตรวจวินิจฉัยในเด็กและผู้ใหญ่

- พัฒนาการช้า/ปัญญาอ่อน (DD/ID): ถือเป็น การตรวจวินิจฉัยขั้นแรก เนื่องจากให้ผลการวินิจฉัยที่ชัดเจนสูงกว่า Karyotyping

- ภาวะออทิซึม (ASD): ใช้เพื่อค้นหา CNVs ที่เกี่ยวข้องกับภาวะออทิซึม

- ความผิดปกติแต่กำเนิดหลายอย่าง (MCA): เมื่อทารกหรือเด็กมีอาการผิดปกติหลายระบบ


การตรวจในภาวะตั้งครรภ์ (Prenatal Diagnosis)

- ทารกมีความผิดปกติทางโครงสร้าง (Major Structural Abnormality): เมื่อพบความผิดปกติจากการอัลตราซาวนด์ (Ultrasound) แนะนำให้ใช้ CMA แทน Karyotyping เพื่อเพิ่มโอกาสในการวินิจฉัย

- ภาวะแท้งซ้ำซ้อน (Recurrent Miscarriage): ใช้ตรวจหาความผิดปกติของโครโมโซมในชิ้นส่วนของการตั้งครรภ์ (Products of Conception: POC) เพื่อช่วยประเมินความเสี่ยงในการตั้งครรภ์ครั้งถัดไป

ข้อดีและข้อจำกัด

ข้อดี (Advantages)

ความละเอียดในการตรวจวินิจฉัยสูงขึ้นอย่างมาก (Increased Diagnostic Yield): สามารถให้ผลการวินิจฉัยที่ชัดเจนในผู้ป่วยที่ไม่พบความผิดปกติจาก Karyotyping ได้เพิ่มขึ้นถึง 15-20%

ไม่ต้องเพาะเลี้ยงเซลล์ (No need for cell culture): ทำให้การวิเคราะห์ทำได้รวดเร็วขึ้นและลดความล้มเหลวของตัวอย่าง


ข้อจำกัด (Limitations)


ไม่สามารถตรวจจับความผิดปกติแบบสมดุล (Cannot detect Balanced Rearrangements): ไม่ว่าจะเป็น Inversion หรือ Balanced Translocation ซึ่งยังต้องใช้ Karyotyping ในบางกรณี

ผลลัพธ์ที่ไม่ชัดเจน (Variants of Uncertain Significance: VUS): การพบ CNVs ที่ยังไม่เคยมีการรายงาน หรือข้อมูลทางคลินิกไม่เพียงพอ อาจทำให้เกิดความสับสนในการแปลผลและต้องมีการให้คำปรึกษาทางพันธุศาสตร์ (Genetic Counseling) อย่างละเอียด


อนาคตของเทคโนโลยี

ในอนาคต CMA มีแนวโน้มที่จะถูกบูรณาการเข้ากับเทคโนโลยี การหาลำดับเบสยุคใหม่ (Next-Generation Sequencing: NGS) ที่มีความก้าวหน้า ซึ่ง NGS จะสามารถตรวจจับได้ทั้ง CNVs และ Point Mutations ในการทดสอบเดียว ซึ่งจะให้ข้อมูลทางพันธุกรรมที่ครบถ้วนมากยิ่งขึ้น

การรวมเทคโนโลยี (Integration): มีการพัฒนาเทคนิคที่เรียกว่า "Optical Genome Mapping (OGM)" หรือการวิเคราะห์โครโมโซมด้วย NGS-based CMA เพื่อให้การตรวจมีความสมบูรณ์มากขึ้น


การประยุกต์ใช้ AI: การใช้ Artificial Intelligence (AI) ในการวิเคราะห์ข้อมูล CNVs ขนาดใหญ่และซับซ้อน จะช่วยลดปัญหา VUS และเพิ่มความแม่นยำในการวินิจฉัยและแปลผลทางการแพทย์

ความคิดเห็น

โพสต์ยอดนิยมจากบล็อกนี้

หลอดใส่เลือดมี่กี่ชนิด (tube เลือดมี่กี่ชนิด)

        หลาย ๆ ท่านอาจสงสัยนะครับว่าเวลามีนัดต้องไปพบแพทย์ และเมื่อถึงเวลาเจาะเลือด ทำไมถึงต้องเก็บเลือดเราไปทีละหลาย ๆ หลอดและในการนัดแต่ละครั้งก็มีการเจาะเลือดไปไม่เหมือนเดิมกับครั้งก่อน วันนี้เราจะมาทำความเข้าใจกันครับว่าหลอดใส่เลือดแต่ละแบบมีความแตกต่างกันอย่างไร         ปัจจุบันในทางการแพทย์หลอดสำหรับเก็บตัวอย่างเลือดนั้นถูกพัฒนามาหลายรูปแบบด้วยกัน เพื่อให้มีประสิทธิภาพสำหรับตรวจทางห้องปฏิบัติการรวมถึงระยะในการเก็บรักษาตัวอย่างเลือดให้มีความเหมาะสม และมีประสิทธิภาพสูงสุดตามวัตถุประสงค์ของการตรวจทางห้องปฏิบัติการครับ สำหรับในวันนี้จะพามาทำความรู้จักกับหลอดเลือดพื้นฐานที่ใช้ในการตรวจประจำของโรงพยาบาลโดยทั่วไปครับ  สิ่งที่อยู่ในหลอดเลือดแต่ละสี        สิ่งที่อยู่ข้างในหลอดเลือดสีต่าง ๆ คือ สารเคมีที่ป้องกันการแข็งตัวของเลือด (สารกันเลือดแข็ง) โดยในหลอดแต่ละสีก็จะมีสารกันเลือดแข็งคนละชนิดกันครับ ซึ่งสาเหตุที่ต้องใช้สารกันเลือดแข็งหลายชนิด ไม่สามารถใช้ชนิดเดียว หรือหลอดเดียวสำหรับารตรวจได้ทั้งหมดก็เพราะว่าส...

DNA ตอนที่ 1 : DNA คืออะไร และโครงสร้างของ DNA

สารพันธุกรรม (genetic materials) ห มายถึงสารที่ทำหน้าที่เก็บข้อมูลพื้นฐานของสิ่งมีชีวิตทั้งสิ่งมีชีวิตระดับโปรคาริโอต (prokaryote) และยูคาริโอต (eukaryote) โดยสารพันธุกรรมประกอบด้วย ดีเอ็นเอ (deoxyribonucleic acid หรือ DNA) และอาร์เอ็นเอ (ribonucleic acid หรือ RNA) การเก็บรักษาข้อมูลพื้นฐานของสิ่งมีชีวิตเกิดจากการเรียงลำดับของหน่อยย่อยที่สุดของ DNA และ RNA อย่างเป็นระเบียบและมีความหมาย ซึ่งหน่อยย่อยของดีเอ็นเอและอาร์เอ็นเอเราเรียกว่า นิวคลีโอไทด์ (nucleotide) สิ่งมีชีวิตจะทำการแปลรหัสข้อมูลนิวคลีโอไทด์เหล่านี้ออกมาเป็นโปรตีนเพื่อทำหน้าที่ต่าง ๆ ของเซลล์หรือร่างกายของสิ่งมีชีวิตต่อไปผ่านการทำงานร่วมกันตั้งแต่ DNA RNA ไปจนถึงขั้นตอนการสั่งเคราะห์โปรตีน อย่างไรก็ตามสิ่งมีชีวิตบางประเภทจะเก็บข้อมูลพื้นฐานของตัวเองในรูปแบบของ RNA เท่านั้น เช่นไวรัสในกลุ่มรีโทรไวรัส หรือที่เรารู้จักกันดีก็คือไวรัสโควิด ภาพที่ 1 แสดงโครงสร้างจำลองของ DNA ที่มาภาพ : http://becuo.com/red-dna-wallpaper   DNA (deoxyribonucleic acid )                  D...

โครงสร้างโปรตีน (Protein structure)

โครงสร้างโปรตีน (Protein structure)             โปรตีนคือสารชีวโมเลกุลขนาดใหญ่และมีโครงสร้างซับซ้อนเกิดจากหน่วยย่อยกรดอะมิโน (amino acid) จำนวนมากตั้งแต่หลักร้อยจนถึงหลักพันหน่วยมาต่อกันเกิดเป็นสายยาว (long chains) เรียกว่า polypeptide ซึ่งในสายหรือระหว่างสายของ polypeptide เองก็จะเกิดพันธะทางเคมีขึ้นได้ทำให้โปรตีนมีโครงสร้างที่แตกต่างกันออกไปและทำให้โปรตีนเองมีคุณสมบัติที่หลากหลายและโครงสร้างซับซ้อน             กรดอะมิโนเป็นหน่วยย่อย (monomer) ของโปรตีนซึ่งประกอบไปด้วยกรดอะมิโน 20 ชนิด โครงสร้างของกรดอะมิโนประกอบด้วย หมู่อะมิโน (NH 3 ) หมู่คาร์บอกซิล (COO - ) และหมู่ R หรือ side chain ที่จับอยู่กับ alpha carbon โดยกรดอะมิโนแต่ละชนิดจะมีโครงสร้างเหมือนกันจะแตกต่างกันเพียงแค่หมู่ R เท่านั้น กรดอะมิโนแต่ละตัวจะมีเชื่อมต่อกันโดยพันธะเพปไทด์ (peptide bond) ระหว่างหมู่คาร์บอกซิลและหมู่อะมิโน ดังนั้นสิ่งที่กำหนดคุณสมบัติของโปรตีน หน้าที่ของโปรตีน และโครงสร้างของโปรตีนก็คื...