Chromosome Array (Chromosomal Microarray Analysis: CMA)
เทคนิคการตรวจโครโมรโซมอาร์เรย์ หรือ Chromosome Array (CMA) เป็นเทคนิคทางพันธุศาสตร์ระดับสูงที่กลายเป็นมาตรฐานหลักในการวินิจฉัยความผิดปกติของโครโมโซมที่ไม่สามารถตรวจพบได้ด้วยวิธีการแบบดั้งเดิม CMA ได้รับการพัฒนาในช่วงปลายทศวรรษ 1990 และในช่วงต้นทศวรรษที่ 21 ได้เข้ามาแทนที่ Karyotyping อย่างรวดเร็วในฐานะ เครื่องมือวินิจฉัยทางพันธุกรรมขั้นต้น (First-tier diagnostic test) สำหรับผู้ป่วยที่มีภาวะพัฒนาการช้า/ปัญญาอ่อน (Developmental Delay/Intellectual Disability), ภาวะออทิซึม (Autism Spectrum Disorder), หรือความผิดปกติแต่กำเนิดหลายอย่าง (Multiple Congenital Anomalies) ที่ไม่ทราบสาเหตุหลักการ
Chromosomal Microarray Analysis (CMA) หรือเรียกอีกอย่างว่า Array Comparative Genomic Hybridization (aCGH) เป็นเทคโนโลยีที่ใช้วิเคราะห์ ปริมาณสำเนาของสารพันธุกรรม (Copy Number Variations: CNVs) ทั่วทั้งจีโนม (Genome) โดยเฉพาะอย่างยิ่งการขาดหาย (Deletion) หรือการเพิ่มขึ้น (Duplication) ของชิ้นส่วน DNA ขนาดเล็ก ซึ่งเทคนิคดั้งเดิมอย่าง Karyotyping (การวิเคราะห์โครโมโซมด้วยกล้องจุลทรรศน์) ไม่สามารถตรวจจับได้ มีลักษณะเด่นดังนี้ความละเอียดสูง (High Resolution): CMA สามารถตรวจจับความผิดปกติที่มีขนาดเล็กตั้งแต่ 1,000 คู่เบส (1 kb) ไปจนถึงหลายล้านคู่เบส ซึ่งละเอียดกว่า Karyotyping หลายร้อยเท่า
Copy Number Variants (CNVs): ความผิดปกติที่ CMA ตรวจจับได้นี้เรียกว่า CNVs ซึ่งรวมถึงความผิดปกติที่ทราบว่าก่อโรคและที่ยังไม่ทราบความสำคัญทางคลินิก (Variants of Uncertain Significance: VUS)
ประเภทของ Chromosome Array
CMA แบ่งตามการออกแบบโพรบ (Probe Design) และการครอบคลุมของจีโนม (Genome Coverage)1. Array CGH (aCGH)
เป็นรูปแบบดั้งเดิมที่เน้นการตรวจหา CNVs โดยเฉพาะ ใช้โพรบที่ครอบคลุมพื้นที่ทั่วทั้งจีโนม หรือมุ่งเน้นบริเวณที่มีความสำคัญทางคลินิก เทคนิคนี้อาศัยการเปรียบเทียบ DNA ของผู้ป่วยกับ DNA อ้างอิง (Reference DNA)
2. SNP Array (Single Nucleotide Polymorphism Array)
เป็นรูปแบบที่พัฒนาขึ้นมา ใช้โพรบที่ตรวจจับ ความแตกต่างของเบสเดี่ยว (SNP) ร่วมกับการตรวจ CNVs
ข้อได้เปรียบเพิ่มเติม: สามารถตรวจจับภาวะ Uniparental Disomy (UPD) (การที่คนได้รับโครโมโซมทั้งคู่มาจากพ่อหรือแม่ฝ่ายเดียว) และ Areas of Homozygosity (AOH) (บริเวณที่มีข้อมูลพันธุกรรมเหมือนกันจากทั้งสองโครโมโซมคู่ ซึ่งอาจบ่งชี้ถึงความสัมพันธ์ทางสายเลือดใกล้ชิดของพ่อแม่) ซึ่งเป็นสาเหตุของโรคทางพันธุกรรมบางชนิดได้
สิ่งที่ CMA ตรวจพบได้และไม่ได้
ตรวจพบได้- การขาดหาย/การเพิ่มจำนวน (Deletion/Duplication) - CNVs ถือ เป็นจุดแข็งหลักของ CMA ตรวจพบได้แม้ขนาดเล็กมาก (Submicroscopic)
- ความผิดปกติเชิงปริมาณของโครโมโซม (Aneuploidy) เช่น Trisomy 21 (ดาวน์ซินโดรม)
ตรวจพบไม่ได้
การตรวจวินิจฉัยในเด็กและผู้ใหญ่
- พัฒนาการช้า/ปัญญาอ่อน (DD/ID): ถือเป็น การตรวจวินิจฉัยขั้นแรก เนื่องจากให้ผลการวินิจฉัยที่ชัดเจนสูงกว่า Karyotyping
- ภาวะออทิซึม (ASD): ใช้เพื่อค้นหา CNVs ที่เกี่ยวข้องกับภาวะออทิซึม
- ความผิดปกติแต่กำเนิดหลายอย่าง (MCA): เมื่อทารกหรือเด็กมีอาการผิดปกติหลายระบบ
การตรวจในภาวะตั้งครรภ์ (Prenatal Diagnosis)
- ทารกมีความผิดปกติทางโครงสร้าง (Major Structural Abnormality): เมื่อพบความผิดปกติจากการอัลตราซาวนด์ (Ultrasound) แนะนำให้ใช้ CMA แทน Karyotyping เพื่อเพิ่มโอกาสในการวินิจฉัย
- ภาวะแท้งซ้ำซ้อน (Recurrent Miscarriage): ใช้ตรวจหาความผิดปกติของโครโมโซมในชิ้นส่วนของการตั้งครรภ์ (Products of Conception: POC) เพื่อช่วยประเมินความเสี่ยงในการตั้งครรภ์ครั้งถัดไป
ความละเอียดในการตรวจวินิจฉัยสูงขึ้นอย่างมาก (Increased Diagnostic Yield): สามารถให้ผลการวินิจฉัยที่ชัดเจนในผู้ป่วยที่ไม่พบความผิดปกติจาก Karyotyping ได้เพิ่มขึ้นถึง 15-20%
ไม่ต้องเพาะเลี้ยงเซลล์ (No need for cell culture): ทำให้การวิเคราะห์ทำได้รวดเร็วขึ้นและลดความล้มเหลวของตัวอย่าง
ข้อจำกัด (Limitations)
ไม่สามารถตรวจจับความผิดปกติแบบสมดุล (Cannot detect Balanced Rearrangements): ไม่ว่าจะเป็น Inversion หรือ Balanced Translocation ซึ่งยังต้องใช้ Karyotyping ในบางกรณี
ผลลัพธ์ที่ไม่ชัดเจน (Variants of Uncertain Significance: VUS): การพบ CNVs ที่ยังไม่เคยมีการรายงาน หรือข้อมูลทางคลินิกไม่เพียงพอ อาจทำให้เกิดความสับสนในการแปลผลและต้องมีการให้คำปรึกษาทางพันธุศาสตร์ (Genetic Counseling) อย่างละเอียด
การรวมเทคโนโลยี (Integration): มีการพัฒนาเทคนิคที่เรียกว่า "Optical Genome Mapping (OGM)" หรือการวิเคราะห์โครโมโซมด้วย NGS-based CMA เพื่อให้การตรวจมีความสมบูรณ์มากขึ้น
การประยุกต์ใช้ AI: การใช้ Artificial Intelligence (AI) ในการวิเคราะห์ข้อมูล CNVs ขนาดใหญ่และซับซ้อน จะช่วยลดปัญหา VUS และเพิ่มความแม่นยำในการวินิจฉัยและแปลผลทางการแพทย์
- ความผิดปกติเชิงปริมาณของโครโมโซม (Aneuploidy) เช่น Trisomy 21 (ดาวน์ซินโดรม)
ตรวจพบไม่ได้
- การกลับด้าน (Inversion) โครงสร้างเปลี่ยนแต่ปริมาณ DNA ไม่เปลี่ยน
- การย้ายที่แบบสมดุล (Balanced Translocation) โครโมโซมแลกเปลี่ยนชิ้นส่วนกันแต่ไม่มีการเพิ่มหรือลดของ DNA
- การย้ายที่แบบสมดุล (Balanced Translocation) โครโมโซมแลกเปลี่ยนชิ้นส่วนกันแต่ไม่มีการเพิ่มหรือลดของ DNA
- สุทธิจุดกลายพันธุ์ (Point Mutations) ต้องใช้เทคนิคการหาลำดับเบส (Sequencing)
การประยุกต์ใช้ทางคลินิก (Current Standard of Care)
CMA ถูกนำมาใช้ในหลายบริบททางคลินิก และถือเป็นเครื่องมือวินิจฉัยหลักสำหรับหลายเงื่อนไขการตรวจวินิจฉัยในเด็กและผู้ใหญ่
- พัฒนาการช้า/ปัญญาอ่อน (DD/ID): ถือเป็น การตรวจวินิจฉัยขั้นแรก เนื่องจากให้ผลการวินิจฉัยที่ชัดเจนสูงกว่า Karyotyping
- ภาวะออทิซึม (ASD): ใช้เพื่อค้นหา CNVs ที่เกี่ยวข้องกับภาวะออทิซึม
- ความผิดปกติแต่กำเนิดหลายอย่าง (MCA): เมื่อทารกหรือเด็กมีอาการผิดปกติหลายระบบ
การตรวจในภาวะตั้งครรภ์ (Prenatal Diagnosis)
- ทารกมีความผิดปกติทางโครงสร้าง (Major Structural Abnormality): เมื่อพบความผิดปกติจากการอัลตราซาวนด์ (Ultrasound) แนะนำให้ใช้ CMA แทน Karyotyping เพื่อเพิ่มโอกาสในการวินิจฉัย
- ภาวะแท้งซ้ำซ้อน (Recurrent Miscarriage): ใช้ตรวจหาความผิดปกติของโครโมโซมในชิ้นส่วนของการตั้งครรภ์ (Products of Conception: POC) เพื่อช่วยประเมินความเสี่ยงในการตั้งครรภ์ครั้งถัดไป
ข้อดีและข้อจำกัด
ข้อดี (Advantages)ความละเอียดในการตรวจวินิจฉัยสูงขึ้นอย่างมาก (Increased Diagnostic Yield): สามารถให้ผลการวินิจฉัยที่ชัดเจนในผู้ป่วยที่ไม่พบความผิดปกติจาก Karyotyping ได้เพิ่มขึ้นถึง 15-20%
ไม่ต้องเพาะเลี้ยงเซลล์ (No need for cell culture): ทำให้การวิเคราะห์ทำได้รวดเร็วขึ้นและลดความล้มเหลวของตัวอย่าง
ข้อจำกัด (Limitations)
ไม่สามารถตรวจจับความผิดปกติแบบสมดุล (Cannot detect Balanced Rearrangements): ไม่ว่าจะเป็น Inversion หรือ Balanced Translocation ซึ่งยังต้องใช้ Karyotyping ในบางกรณี
ผลลัพธ์ที่ไม่ชัดเจน (Variants of Uncertain Significance: VUS): การพบ CNVs ที่ยังไม่เคยมีการรายงาน หรือข้อมูลทางคลินิกไม่เพียงพอ อาจทำให้เกิดความสับสนในการแปลผลและต้องมีการให้คำปรึกษาทางพันธุศาสตร์ (Genetic Counseling) อย่างละเอียด
อนาคตของเทคโนโลยี
ในอนาคต CMA มีแนวโน้มที่จะถูกบูรณาการเข้ากับเทคโนโลยี การหาลำดับเบสยุคใหม่ (Next-Generation Sequencing: NGS) ที่มีความก้าวหน้า ซึ่ง NGS จะสามารถตรวจจับได้ทั้ง CNVs และ Point Mutations ในการทดสอบเดียว ซึ่งจะให้ข้อมูลทางพันธุกรรมที่ครบถ้วนมากยิ่งขึ้นการรวมเทคโนโลยี (Integration): มีการพัฒนาเทคนิคที่เรียกว่า "Optical Genome Mapping (OGM)" หรือการวิเคราะห์โครโมโซมด้วย NGS-based CMA เพื่อให้การตรวจมีความสมบูรณ์มากขึ้น
การประยุกต์ใช้ AI: การใช้ Artificial Intelligence (AI) ในการวิเคราะห์ข้อมูล CNVs ขนาดใหญ่และซับซ้อน จะช่วยลดปัญหา VUS และเพิ่มความแม่นยำในการวินิจฉัยและแปลผลทางการแพทย์
ความคิดเห็น
แสดงความคิดเห็น