ข้ามไปที่เนื้อหาหลัก

บทความ

กำลังแสดงโพสต์จาก มกราคม, 2025

ความหมายและหลักการของ Next Generation Sequencing (NGS)

หลักการของ Next Generation Sequencing (NGS) Next Generation Sequencing (NGS) เป็นเทคโนโลยีที่ใช้ในการหาลำดับนิวคลีโอไทด์หรือเบสของดีเอ็นเอในปริมาณมากอย่างมีประสิทธิภาพ โดย NGS สามารถอ่านลำดับสารพันธุกรรมได้พร้อมกันในหลายตัวอย่าง ซึ่งเป็นการพัฒนาขึ้นจากเทคนิคการหาลำดับแบบเดิม เช่น Sanger sequencing ที่มีข้อจำกัดในด้านความเร็วและปริมาณข้อมูลที่สามารถประมวลผลได้ในแต่ละครั้ง หลักการที่เป็นจุดเด่นของแต่ละยี่ห้อใน Next Generation Sequencing (NGS) ปัจจุบันเทคโนโลยี Next Generation Sequencing (NGS) มีด้วยกันหลายแพลตฟอร์มที่ถูกคิดค้นพัฒนาขึ้นมาโดยบริษัทต่างๆ ซึ่งแต่ละแพลตฟอร์มมีจุดเด่นและหลักการทำงานที่แตกต่างกัน ดังนี้: 1. Illumina • หลักการทำงาน: ใช้เทคนิค “sequencing by synthesis” ซึ่งจะมีการเพิ่มนิวคลีโอไทด์ที่มีฟลูออเรสเซนต์ในระหว่างการสังเคราะห์ดีเอ็นเอ โดยสามารถอ่านลำดับเบสได้พร้อมกันในปริมาณมาก (massive parallel sequencing) ทำให้สามารถจัดลำดับจีโนมได้อย่างรวดเร็วและมีประสิทธิภาพสูง • จุดเด่น: มีความแม่นยำสูง และสามารถทำการวิเคราะห์หลายตัวอย่างพร้อมกัน (multiplexing) ทำให้เหมาะสำ...

การตรวจคัดกรองมะเร็งลำไส้ (Colorectal Cancer Screening)

การตรวจคัดกรองมะเร็งลำไส้ (Colorectal Cancer Screening) มะเร็งลำไส้ใหญ่และไส้ตรงเป็นมะเร็งที่พบบ่อยเป็นอันดับต้นๆ ของประเทศไทย การตรวจคัดกรองมีความสำคัญอย่างยิ่งในการค้นหาโรคตั้งแต่ระยะเริ่มแรก ซึ่งจะช่วยเพิ่มโอกาสในการรักษาให้หายขาดได้ มะเร็งลำไส้ใหญ่และไส้ตรง คือ เนื้องอกร้ายที่เกิดจากเซลล์เยื่อบุผนังลำไส้ใหญ่มีการเปลี่ยนแปลงและเจริญเติบโตผิดปกติ มักเริ่มต้นจากติ่งเนื้อ (polyp) ที่ไม่อันตราย แล้วค่อยๆ พัฒนากลายเป็นมะเร็ง อาการและอาการแสดง อาการเตือนที่ควรพบแพทย์: มีเลือดปนในอุจจาระ หรืออุจจาระสีดำ การเปลี่ยนแปลงของลักษณะการถ่ายอุจจาระ เช่น ท้องผูกสลับท้องเสีย ถ่ายอุจจาระเป็นเส้นเล็กลง ปวดท้องเรื้อรังโดยไม่ทราบสาเหตุ น้ำหนักลดโดยไม่ทราบสาเหตุ อ่อนเพลีย เหนื่อยง่าย รู้สึกถ่ายอุจจาระไม่สุด อาการในระยะต่างๆ: ระยะเริ่มแรก: มักไม่มีอาการ ระยะกลาง: อาจมีเลือดออกเป็นครั้งคราว ท้องผูกสลับท้องเสีย ระยะลุกลาม: ปวดท้องรุนแรง น้ำหนักลด ซีด อ่อนเพลีย ความสำคัญของการตรวจคัดกรอง การตรวจคัดกรองมะเร็งลำไส้มีวัตถุประสงค์หลัก 2 ประการ: 1. เพื่อตรวจหาริ้วรอยของมะเร็งตั้งแต่ระยะเริ่มแรก ก่อ...

การตรวจฮอร์โมนไทรอยด์ในเลือด และการแปลผล

การตรวจฮอร์โมนไทรอยด์ในเลือด ฮอร์โมนไทรอยด์คือฮอร์โมนที่ผลิตโดยต่อมไทรอยด์ ซึ่งตั้งอยู่ที่บริเวณลำคอของเรา มีหน้าที่สำคัญในการควบคุมกระบวนการเผาผลาญในร่างกาย โดยเฉพาะการทำงานของเซลล์ต่าง ๆ โดยฮอร์โมนหลักที่ถูกผลิตออกมาได้แก่ Triiodothyronine (T3) และ Thyroxine (T4) ซึ่งมีบทบาทในการควบคุมการเติบโต การพัฒนาของร่างกาย รวมถึงการรักษาอุณหภูมิของร่างกายและระดับไขมันในเลือด นอกจาก T3 และ T4 แล้ว Thyroid Stimulating Hormone (TSH) ซึ่งถูกผลิตโดยต่อมใต้สมอง (Pituitary Gland) มีหน้าที่กระตุ้นการผลิตและหลั่งฮอร์โมน T3 และ T4 จากต่อมไทรอยด์ การวัดระดับ TSH เป็นหนึ่งในตัวชี้วัดสำคัญในการประเมินการทำงานของต่อมไทรอยด์ เนื่องจาก TSH จะเพิ่มขึ้นหรือลดลงเพื่อปรับสมดุลฮอร์โมนไทรอยด์ในร่างกาย หน้าที่ของฮอร์โมนไทรอยด์ 1. ควบคุมการเผาผลาญ: ฮอร์โมน T3 และ T4 ช่วยกระตุ้นการเผาผลาญพลังงานในเซลล์ ทำให้ร่างกายสามารถใช้พลังงานได้อย่างมีประสิทธิภาพ. 2. ส่งเสริมการเจริญเติบโต: ฮอร์โมนเหล่านี้มีบทบาทสำคัญต่อการเจริญเติบโตและพัฒนาการของร่างกาย โดยเฉพาะในเด็ก. 3. ควบคุมอุณหภูมิ: ฮอร์โมนไทรอยด์ช่วยในการรักษา...

ทำไมการแปลผลทดสอบทางพันธุกรรมถึงไม่ใช่เรื่องง่าย

"ทำไมการแปลผลทดสอบทางพันธุกรรมถึงไม่ใช่เรื่องง่าย" ในปัจจุบันมีการนำเทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมที่ทันสมัยมาใช้มากขึ้นในประเทศไทย แต่การแปลผลทดสอบทางพันธุกรรมนั้นเป็นกระบวนการที่ซับซ้อนและท้าทายอย่างมาก แม้แต่บุคลากรทางการแพทย์ทั่วไปก็ยังไม่สามารถที่จะแปลผลการทดสอบเหล่านี้ได้ด้วยตนเอง เนื่องจากมีหลายปัจจัยที่ต้องพิจารณาอย่างรอบคอบ โดยเฉพาะอย่างยิ่งในบริบทของการวินิจฉัยโรคและการวางแผนการรักษา ในบทความนี้จะอธิบายเหตุผลที่ทำให้การแปลผลทดสอบทางพันธุกรรมไม่ใช่เรื่องง่ายอย่างที่เราคิดกันครับ พร้อมกับการพูดถึงเทคนิคต่างๆ ที่ใช้ในปัจจุบัน เช่น single gene Test หรือ muti-genes panel test, Whole Exome Sequencing (WES), และ Whole Genome Sequencing (WGS) ความซับซ้อนของข้อมูลพันธุกรรม 1. ความหลากหลายของยีนและความผิดปกติ ยีนแต่ละตัวในร่างกายของคนเรานั้นสามารถมีการกลายพันธุ์ได้หลายรูปแบบ ซึ่งส่งผลต่อความเสี่ยงในการเกิดโรคต่างๆ การตรวจสอบความผิดปกติทางพันธุกรรมจึงต้องใช้เทคนิคที่หลากหลาย เช่น การตรวจโครโมโซมอะเรย์ (Chromosomal Microarray Analysis) และการตรวจหายีนส์กลายพันธุ์ (Mutation...

โพแทสเซียมในเลือดสำคัญอย่างไร และการแปลผลเลือด

โพแทสเซียมในเลือดสำคัญอย่างไร และการแปลผล โพแทสเซียม (Potassium) เป็นแร่ธาตุที่มีบทบาทสำคัญอย่างมากในร่างกาย โดยเฉพาะการทำงานของระบบประสาทและกล้ามเนื้อ รวมถึงการรักษาสมดุลของของเหลวในเซลล์และระบบไหลเวียนเลือดเรา ดังนั้นระดับโพแทสเซียมที่เหมาะสมในเลือดจึงมีความสำคัญอย่างมากกับร่างกายของเรา เนื่องจากการเปลี่ยนแปลงของระดับโพแทสเซียมสามารถส่งผลกระทบต่อสุขภาพอย่างรุนแรงได้ครับ บทบาทสำคัญของโพแทสเซียมในร่างกาย การส่งสัญญาณประสาท โพแทสเซียมมีบทบาทในการช่วยส่งสัญญาณระหว่างเซลล์ประสาท ทำให้ระบบประสาททำงานได้อย่างมีประสิทธิภาพ เช่น การควบคุมการเคลื่อนไหว การตอบสนองต่อสิ่งเร้า และการทำงานของสมอง การทำงานของกล้ามเนื้อ ระดับโพแทสเซียมที่เหมาะสมช่วยให้กล้ามเนื้อหดตัวและคลายตัวได้อย่างปกติ โดยเฉพาะกล้ามเนื้อหัวใจที่ต้องการโพแทสเซียมเพื่อควบคุมจังหวะการเต้นของหัวใจ การรักษาสมดุลกรด-ด่าง (pH) โพแทสเซียมช่วยควบคุมสมดุลกรด-ด่างในร่างกาย โดยทำงานร่วมกับโซเดียมและแร่ธาตุอื่น ๆ การควบคุมความดันโลหิต โพแทสเซียมมีส่วนช่วยลดความดันโลหิต โดยส่งผลต่อการขยายตัวของหลอดเลือด และลดผลกระทบของโซเดียมในร่างกาย การแ...

ไมโครไบโอมและสุขภาพลำไส้ (microbiome and gut health)

 ไมโครไบโอมและสุขภาพลำไส้ ในช่วงไม่กี่ปีที่ผ่านมา คำว่า “ไมโครไบโอม” ได้รับความสนใจอย่างมากในวงการสุขภาพ เนื่องจากมีบทบาทสำคัญต่อสุขภาพโดยรวมของเรา โดยเฉพาะอย่างยิ่งในระบบทางเดินอาหาร ซึ่งไมโครไบโอมหมายถึงระบบนิเวศของจุลินทรีย์ที่อาศัยอยู่ในลำไส้ของมนุษย์ รวมถึงแบคทีเรีย เชื้อรา และไวรัส ที่มีความหลากหลายและมีบทบาทสำคัญในการทำงานของร่างกาย ไมโครไบโอมคืออะไร? ไมโครไบโอมในลำไส้ประกอบด้วยจุลินทรีย์ที่มีทั้งชนิดดีและไม่ดี ซึ่งจุลินทรีย์เหล่านี้มีหน้าที่ในการย่อยอาหาร ดูดซึมสารอาหาร และสร้างวิตามินที่จำเป็นต่อร่างกาย เช่น วิตามิน K และ B12. นอกจากนี้ ไมโครไบโอมยังช่วยเสริมสร้างระบบภูมิคุ้มกัน และมีส่วนในการควบคุมอารมณ์และสุขภาพจิต. การเกิดขึ้นของไมโครไบโอมเริ่มตั้งแต่แรกเกิด โดยจะได้รับจุลินทรีย์จากแม่ผ่านการคลอดและน้ำนมแม่ รวมถึงจากสิ่งแวดล้อมที่เด็กสัมผัส. เมื่อเติบโตขึ้น ไมโครไบโอมจะเปลี่ยนแปลงไปตามพฤติกรรมการกิน การใช้ชีวิต และสุขภาพโดยรวมของแต่ละบุคคล ความสำคัญของความสมดุลในไมโครไบโอม ความสมดุลของไมโครไบโอมเป็นสิ่งสำคัญ หากมีความไม่สมดุลระหว่างจุลินทรีย์ดีและไม่ดี อาจส่งผลให้เกิดปั...

เมื่อมีความเสี่ยงกับโรคติดต่อทางเพศสัมพันธ์ (STDs) ต้องทำอย่างไร

"หากคุณสงสัยว่าตนเองมีความเสี่ยงต่อการติดเชื้อโรคติดต่อทางเพศสัมพันธ์ (STDs) หรือมีอาการผิดปกติ ควรดำเนินการตามขั้นตอนดังนี้" ขั้นตอนที่ควรทำ 1. ปรึกษาแพทย์: หากคุณมีอาการเช่น คัน ตุ่มน้ำ หนอง หรือปัสสาวะแสบขัด ควรไปพบแพทย์เพื่อรับการตรวจและวินิจฉัยอย่างถูกต้อง. 2. การตรวจสุขภาพ: • การตรวจโรคติดต่อทางเพศสัมพันธ์มักจะรวมถึงการตรวจเลือดและการตรวจร่างกาย โดยแพทย์จะเลือกวิธีที่เหมาะสมตามประวัติสุขภาพและพฤติกรรมของคุณ. • การตรวจเลือดสามารถใช้เพื่อหาสัญญาณของโรคต่าง ๆ เช่น HIV, ซิฟิลิส, ไวรัสตับอักเสบ B และ C, หนองใน และเริม การตรวจทางห้องปฏิบัติการที่สามารถตรวจได้ 1. ตรวจเลือด: • HIV: ตรวจหาเชื้อเอชไอวี • ซิฟิลิส (Syphilis): ตรวจหาภูมิคุ้มกันต่อเชื้อ เช่น  Rapid Plasma Reagin (RPR) หรือ Treponema Pallidum Hemagglutination Assay (TPHA) • ไวรัสตับอักเสบ B และ C: ตรวจหาเชื้อและภูมิคุ้มกัน ได้แก่  Hepatitis B Surface Antigen (HBsAg)  Anti-HBs Anti-HCV และ HCV RNA • หนองในและหนองในเทียม: ตรวจหาเชื้อจากตัวอย่างเลือดหรือปัสสาวะ 2. ตรวจภายใน (Pa...

โรคติดต่อทางเพศสัมพันธ์ (Sexually Transmitted Diseases: STDs) คืออะไร

โรคติดต่อทางเพศสัมพันธ์ หรือเรียกย่อ ๆ ว่า STDs โรคติดต่อทางเพศสัมพันธ์ (Sexually Transmitted Diseases: STDs) หรือที่เรียกกันว่า กามโรค เป็นกลุ่มของโรคที่เกิดจากการติดเชื้อที่สามารถแพร่กระจายได้ผ่านการมีเพศสัมพันธ์ เช่น การมีเพศสัมพันธ์ทางช่องคลอด ทางทวารหนัก หรือทางปาก โดยเชื้อโรคเหล่านี้อาจเป็นไวรัส แบคทีเรีย หรือปรสิต โรคเหล่านี้มีความเสี่ยงสูงในการแพร่กระจายและสามารถส่งผลกระทบต่อสุขภาพทั้งในระยะสั้นและระยะยาว สาเหตุและการแพร่กระจาย โรคติดต่อทางเพศสัมพันธ์เกิดจากการติดเชื้อที่สามารถส่งผ่านได้หลายวิธี ได้แก่: • การมีเพศสัมพันธ์: ผ่านการสัมผัสกับของเหลวในร่างกาย เช่น น้ำอสุจิ เลือด หรือของเหลวในช่องคลอด • การใช้เข็มร่วมกัน: โดยเฉพาะในผู้ใช้สารเสพติดที่มักจะไม่คำนึงถึงความปลอดภัย • การส่งต่อจากแม่สู่ลูก: ผ่านการตั้งครรภ์หรือการคลอดบุตร ประเภทของโรคติดต่อทางเพศสัมพันธ์ 1. ซิฟิลิส: เกิดจากเชื้อแบคทีเรีย Treponema pallidum มีระยะฟักตัว 10-90 วัน อาการเริ่มต้นมักเป็นแผลที่อวัยวะเพศ และหากไม่ได้รับการรักษา อาจลุกลามไปยังระบบอื่นๆ ของร่างกาย 2. หนองในแท้: เกิดจากเชื้อ Nei...

กรุ๊ปเลือด หรือ หมู่เลือดคืออะไร (What is blood groups?)

กรุ๊ปเลือดคืออะไร (What is blood groups?) กรุ๊ปเลือดหรือหมู่เลือดเป็นลักษณะเฉพาะของเลือดที่มีความสำคัญทั้งในด้านการแพทย์และการถ่ายเลือด โดยถูกกำหนดจากสารที่อยู่บนผิวเซลล์เม็ดเลือดแดง ซึ่งเรียกว่า แอนติเจน (Antigens) และ แอนติบอดี (Antibodies) ที่มีอยู่ในพลาสม่า ความหมายและความสำคัญของกรุ๊ปเลือด กรุ๊ปเลือดคือการจำแนกประเภทของเลือดตามชนิดของแอนติเจนที่มีอยู่บนเซลล์เม็ดเลือดแดง โดยทั่วไปแล้วกรุ๊ปเลือดมีความสำคัญในการถ่ายเลือด เนื่องจากการให้เลือดที่ไม่ตรงกันระหว่างผู้บริจาคและผู้รับอาจทำให้เกิดปฏิกิริยาที่รุนแรงระหว่างแอนติเจนและแอนติบอดีถึงขั้นเสียชีวิตได้ การรู้กรุ๊ปเลือดของตัวเองจึงเป็นสิ่งจำเป็นในกรณีฉุกเฉินที่ต้องได้รับการถ่ายเลือด. ระบบการจำแนกกรุ๊ปเลือด ระบบหมู่เลือดแบบ ABO ระบบ ABO เป็นระบบที่รู้จักกันดีที่สุดในการจำแนกกรุ๊ปเลือด โดยแบ่งออกเป็น 4 ประเภทหลัก ได้แก่: • กรุ๊ป A: มีแอนติเจน A บนเซลล์เม็ดเลือดแดง และมีแอนติบอดี B ในพลาสม่า • กรุ๊ป B: มีแอนติเจน B บนเซลล์เม็ดเลือดแดง และมีแอนติบอดี A ในพลาสม่า • กรุ๊ป AB: มีทั้งแอนติเจน A และ B บนเซลล์เม็ดเลือดแดง และไม่มีแอ...

เทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมสายยาว หรือ Long-Read Sequencing

เทคโนโลยีการวิเคราะห์ลำดับพันธุกรรมสายยาว หรือ Long-Read Sequencing เทคโนโลยีการหาลำดับพันธุกรรมแบบ Long-Read หรือที่เรียกว่าการหาลำดับพันธุกรรมยุคที่สาม (Third-Generation Sequencing) เป็นการพัฒนาที่เปลี่ยนแปลงวงการจีโนมิกส์อย่างสำคัญ เทคโนโลยีนี้สามารถอ่าน DNA หรือ RNA ในรูปแบบที่ยาวต่อเนื่อง ซึ่งช่วยแก้ปัญหาที่พบในพื้นที่ที่ซับซ้อนหรือซ้ำกันในจีโนม เนื้อหานี้จะอธิบายพื้นฐานของเทคโนโลยีนี้ การทำงานเชิงเทคนิค และการใช้งานที่ทำให้เทคโนโลยีนี้มีความสำคัญในงานวิจัยสมัยใหม่ พื้นฐานของการหาลำดับพันธุกรรมแบบ Long-Read ในเทคโนโลยีการหาลำดับแบบ Short-Read แบบดั้งเดิม DNA หรือ RNA จะถูกแบ่งเป็นชิ้นส่วนขนาดเล็กและทำการหาลำดับทีละส่วน จากนั้นจึงนำมาประกอบกลับด้วยกระบวนการคำนวณ วิธีนี้อาจมีปัญหาเมื่อต้องจัดการกับพื้นที่ที่มีการซ้ำกันสูงหรือมีความซับซ้อน เทคโนโลยี Long-Read ช่วยแก้ปัญหานี้โดยการอ่านลำดับที่ยาวกว่า—บางครั้งยาวเกินกว่า 10,000 เบส—ซึ่งให้ข้อมูลที่ครอบคลุมและแม่นยำมากขึ้นสำหรับการวิเคราะห์จีโนม ปัจจุบันมีสองบริษัทหลักที่เป็นผู้นำในเทคโนโลยีนี้ ได้แก่: PacBio (Pacific Biosciences) : โดด...

ภาวะโลหิตจาง (anemia) ที่เกิดจากความผิดปกติของ globin chains

ภาวะโลหิตจางจากความผิดปกติของ Globin Chains: สาเหตุ การวินิจฉัย และการรักษา ภาวะโลหิตจาง (anemia) เป็นภาวะที่ร่างกายมีปริมาณเม็ดเลือดแดงหรือฮีโมโกลบินในเลือดต่ำกว่าปกติ ซึ่งส่งผลต่อความสามารถในการขนส่งออกซิเจนไปยังเนื้อเยื่อต่าง ๆ ในร่างกาย ในกรณีที่เกิดจากความผิดปกติของโกลบินเชน (globin chains) จะเกี่ยวข้องกับการสังเคราะห์ฮีโมโกลบิน ซึ่งเป็นโปรตีนสำคัญในเม็ดเลือดแดง ภาวะนี้สามารถพบได้ในโรคทางพันธุกรรม เช่น ธาลัสซีเมีย (thalassemia) และฮีโมโกลบินผิดปกติ (hemoglobinopathies) ฮีโมโกลบินและโกลบินเชนคืออะไร? ฮีโมโกลบิน (hemoglobin) เป็นโปรตีนที่พบในเม็ดเลือดแดง ทำหน้าที่ขนส่งออกซิเจนจากปอดไปยังเนื้อเยื่อต่าง ๆ ประกอบด้วยสองส่วนหลัก ได้แก่: ฮีม (heme): เป็นส่วนประกอบที่มีธาตุเหล็ก ทำหน้าที่จับกับออกซิเจน โกลบิน (globin): เป็นโปรตีนที่ประกอบด้วยสายโพลีเปปไทด์ 4 สาย (globin chains) ได้แก่ α-globin และ β-globin เป็นหลักในผู้ใหญ่ ความผิดปกติในการสร้างโกลบินเชนส่งผลให้เกิดฮีโมโกลบินที่ทำงานได้ไม่สมบูรณ์ และอาจทำให้เม็ดเลือดแดงแตกง่าย (hemolysis) หรือมีอายุสั้น สาเหตุของภาวะโลหิตจางจากความผิดปก...

การบำบัดด้วยเซลล์ต้นกำเนิด (Stem Cell Therapy): ความก้าวหน้าและโอกาสในการรักษาโรค

การบำบัดด้วยเซลล์ต้นกำเนิด (Stem Cell Therapy): ความก้าวหน้าและโอกาสในการรักษาโรค การบำบัดด้วยเซลล์ต้นกำเนิด (Stem Cell Therapy) เป็นแนวทางการรักษาที่ใช้เซลล์ต้นกำเนิดเพื่อซ่อมแซมหรือทดแทนเนื้อเยื่อที่เสียหายจากโรคหรือการบาดเจ็บ เซลล์ต้นกำเนิดมีความสามารถพิเศษในการแบ่งตัวและเปลี่ยนเป็นเซลล์ชนิดต่าง ๆ ในร่างกาย ทำให้การบำบัดนี้เป็นความหวังใหม่ในวงการแพทย์ โดยเฉพาะในโรคที่ยังไม่มีวิธีรักษาที่ได้ผลดี เช่น โรคมะเร็ง โรคเบาหวาน โรคหัวใจ และโรคทางระบบประสาท เซลล์ต้นกำเนิดคืออะไร? เซลล์ต้นกำเนิด (Stem Cells) คือเซลล์ที่ยังไม่ได้พัฒนาไปเป็นเซลล์เฉพาะทาง สามารถแบ่งตัวเพื่อสร้างเซลล์ใหม่ และเปลี่ยนไปเป็นเซลล์ชนิดต่าง ๆ ในร่างกาย เช่น เซลล์กล้ามเนื้อ เซลล์ประสาท หรือเซลล์เม็ดเลือด เซลล์ต้นกำเนิดแบ่งออกเป็น 2 ประเภทหลัก: เซลล์ต้นกำเนิดจากตัวอ่อน (Embryonic Stem Cells) มีศักยภาพสูงในการพัฒนาไปเป็นเซลล์ทุกชนิดในร่างกาย แต่การใช้เซลล์ชนิดนี้มีข้อโต้แย้งในด้านจริยธรรม เซลล์ต้นกำเนิดจากร่างกาย (Adult Stem Cells) พบในเนื้อเยื่อต่าง ๆ เช่น ไขกระดูก ไขมัน และเลือด สามารถนำไปใช้ซ่อมแซมเนื้อเยื่อเฉพาะที่ในร...

อาหารสำหรับผู้ป่วยโรคไตเรื้อรัง

 อาหารสำหรับผู้ป่วยโรคไตเรื้อรัง การเลือกอาหารสำหรับผู้ป่วยโรคไตเรื้อรังเป็นสิ่งสำคัญอย่างยิ่ง เนื่องจากการทำงานของไตที่ลดลงส่งผลต่อการขจัดของเสียและสมดุลของสารอาหารในร่างกาย การปรับเปลี่ยนพฤติกรรมการบริโภคจึงช่วยลดภาระของไตและป้องกันภาวะแทรกซ้อนที่อาจเกิดขึ้นได้ หลักการทั่วไปในการเลือกอาหาร ควบคุมปริมาณโปรตีน ผู้ป่วยควรลดการบริโภคโปรตีนที่มากเกินไป เพื่อลดการสะสมของของเสียจากโปรตีนในร่างกาย อย่างไรก็ตาม โปรตีนยังคงจำเป็นสำหรับการซ่อมแซมเนื้อเยื่อ ดังนั้น ควรเลือกโปรตีนคุณภาพสูง เช่น เนื้อปลา ไข่ขาว หรือเต้าหู้ จำกัดโซเดียม โซเดียมส่งผลต่อการควบคุมความดันโลหิตและการกักเก็บน้ำในร่างกาย ผู้ป่วยโรคไตจึงควรหลีกเลี่ยงอาหารเค็ม เช่น ของหมักดอง อาหารกระป๋อง และขนมขบเคี้ยวที่มีเกลือสูง ควรบริโภคเกลือไม่เกิน 2,000 มิลลิกรัมต่อวัน ควบคุมโพแทสเซียม โพแทสเซียมสูงอาจเป็นอันตรายต่อหัวใจ ผู้ป่วยควรหลีกเลี่ยงอาหารที่มีโพแทสเซียมสูง เช่น กล้วย อะโวคาโด มันฝรั่ง และควรบริโภคผักที่ผ่านการลวกเพื่อลดโพแทสเซียมก่อนรับประทาน ผักที่เหมาะสม เช่น แตงกวา ฟักทอง บวบ และหน่อไม้ฝรั่ง ส่วนผลไม้ที่ควรเลือก เช่น แ...

การอ่านผลตรวจไขมันในเลือดด้วยตนเอง

  การอ่านผลตรวจไขมันในเลือดด้วยตนเอง การตรวจไขมันในเลือดเป็นเครื่องมือสำคัญที่ช่วยประเมินความเสี่ยงต่อโรคหัวใจและหลอดเลือด รวมถึงการติดตามสุขภาพของผู้ป่วยที่มีความผิดปกติของไขมัน การอ่านและแปลผลตรวจไขมันในเลือดควรคำนึงถึงค่าปกติและปัจจัยที่มีผลต่อการวินิจฉัยอย่างเหมาะสม ไขมันในเลือดคืออะไร? ไขมันในเลือดเป็นองค์ประกอบสำคัญของระบบร่างกายที่ใช้ในการเก็บพลังงานและสร้างส่วนประกอบของเซลล์ต่างๆ ไขมันในเลือดมีหลายชนิด เช่น ไตรกลีเซอไรด์ (Triglycerides) และโคเลสเตอรอล (Cholesterol) ซึ่งเป็นส่วนประกอบสำคัญของเยื่อหุ้มเซลล์และเป็นตัวตั้งต้นของฮอร์โมนหลายชนิดในร่างกาย โคเลสเตอรอลคืออะไร? โคเลสเตอรอลเป็นสารไขมันชนิดหนึ่งที่ร่างกายสามารถผลิตได้เองในตับ และยังสามารถรับจากอาหาร เช่น เนื้อสัตว์ ไข่ และผลิตภัณฑ์นม โคเลสเตอรอลในร่างกายแบ่งออกเป็น 2 ประเภทหลัก ได้แก่: โคเลสเตอรอลชนิดดี (HDL - High-Density Lipoprotein) : ทำหน้าที่ขนส่งโคเลสเตอรอลส่วนเกินจากเนื้อเยื่อต่างๆ กลับไปยังตับเพื่อกำจัด ช่วยลดความเสี่ยงของโรคหัวใจและหลอดเลือด โคเลสเตอรอลชนิดไม่ดี (LDL - Low-Density Lipoprotein) : ทำหน้าที่ขนส่ง...

PM 2.5 คืออะไร และวิธีการรับมือกับ PM 2.5

 PM 2.5 คืออะไร PM 2.5 เป็นคำย่อที่หมายถึงฝุ่นละอองขนาดเล็กที่มีเส้นผ่านศูนย์กลางไม่เกิน 2.5 ไมครอน ซึ่งเล็กกว่าเส้นผมมนุษย์ถึง 30 เท่า ฝุ่นชนิดนี้สามารถเข้าสู่ระบบทางเดินหายใจและกระแสเลือดได้อย่างง่ายดาย ส่งผลกระทบต่อสุขภาพในระยะสั้นและระยะยาว เช่น โรคระบบทางเดินหายใจ โรคหัวใจ และอาจเพิ่มความเสี่ยงต่อการเกิดมะเร็ง แหล่งกำเนิดของ PM 2.5 มาจากทั้งกิจกรรมของมนุษย์และธรรมชาติ เช่น ควันจากการเผาไหม้เชื้อเพลิง โรงงานอุตสาหกรรม การเผาขยะ หรือไฟป่า นอกจากนี้ยังเกิดจากการรวมตัวกันของสารเคมีในอากาศ เช่น ซัลเฟต ไนเตรต และแอมโมเนีย วิธีการรับมือกับ PM 2.5 การป้องกันและลดผลกระทบจาก PM 2.5 สามารถทำได้ดังนี้: 1. การป้องกันส่วนบุคคล สวมหน้ากากป้องกันฝุ่นละออง : เลือกใช้หน้ากากที่มีประสิทธิภาพ เช่น N95 ซึ่งสามารถกรองฝุ่น PM2.5 ได้อย่างมีประสิทธิภาพ หลีกเลี่ยงกิจกรรมกลางแจ้ง : โดยเฉพาะในวันที่ค่าฝุ่นละอองเกินมาตรฐาน ใช้เครื่องฟอกอากาศ : ในบ้านหรือในสถานที่ปิด เพื่อลดปริมาณฝุ่นในอากาศ 2. การติดตามข้อมูลคุณภาพอากาศ ตรวจสอบดัชนีคุณภาพอากาศ (AQI) ผ่านแอปพลิเคชันหรือเว็บไซต์ เพื่อวางแผนการใช้ชีวิตประจำว...

เปรียบเทียบเทคโนโลยี Sequencing ทั้ง 3 Generation: ความแตกต่างและการทำงาน

เปรียบเทียบเทคโนโลยี Sequencing ทั้ง 3 Generation: ความแตกต่างและการทำงาน Jennifer Ronholm  et,al. 2016 ปัจจุบันนี้การวิเคราะห์ลำดับสารพันธุกรรม (Sequencing) ได้พัฒนาไปอย่างมากตั้งแต่อดีตจนถึงปัจจุบัน โดยเราสามารถแบ่งเทคโนโลยีการวิเคราะห์ลำดับสารพันธุกรรมได้เป็น 3 เจเนอเรชันหลัก ๆ ซึ่งแต่ละเจนก็จะมีจุดเด่นและข้อจำกัดที่เหมาะสมแตกต่างกันออกไปครับ การที่เราซึ่งเป็นผู้ใช้หรือผู้รับบริการจากเทคโนโลยีเหล่านี้เข้าใจจุดเด่นและข้อจำกัดของเทคโนโลยีจะช่วยให้สามารถเลือกใช้เทคนิคที่เหมาะสมกับวัตถุประสงค์หรือการประยุกต์ใช้งานได้อย่างมีประสิทธิภาพมากขึ้นครับ วันนี้เราจะมาทำความรู้จักเทคนิคการวิเคราะห์ลำดับสารพันธุกรรม (Sequencing) กันครับ Gen 1: Sanger Sequencing หลักการทำงานของ Sanger Sequencing ใช้กระบวนการที่เรียกว่า “Dideoxy Chain Termination” ซึ่งประกอบด้วยขั้นการขยายสาย DNA โดยใช้เอนไซม์ DNA polymerase และการใส่ dideoxynucleotide (ddNTPs) ที่ทำให้หยุดการขยายสาย DNA ที่ตำแหน่งที่มีการใส่ ddNTPs เข้ามา จากนั้น DNA ที่ได้จะถูกแยกตามขนาดด้วยกระบวนการ Electrophoresis โดยในระบบ capillary electr...

เทคโนโลยีการวิเคราะห์ลำดับสารพันธุกรรม (Sequencing Technology)

เทคโนโลยีการวิเคราะห์ลำดับสารพันธุกรรม (Sequencing Technology) ความสำคัญของการวิเคราะห์ลำดับสารพันธุกรรม การวิเคราะห์ลำดับสารพันธุกรรม (Sequencing) เป็นเทคโนโลยีที่สำคัญในวงการชีววิทยาศาสตร์และการแพทย์ โดยช่วยให้เราเข้าใจโครงสร้างของ DNA และ RNA ซึ่งเป็นข้อมูลพื้นฐานที่กำหนดลักษณะและการทำงานของสิ่งมีชีวิต เทคโนโลยีนี้ถูกนำมาใช้ในหลายด้าน เช่น การวินิจฉัยโรคทางพันธุกรรม การวิจัยโรคมะเร็ง การศึกษาเกี่ยวกับวิวัฒนาการ และการพัฒนายาแบบเฉพาะบุคคล (Precision Medicine) วิวัฒนาการของเทคโนโลยีการวิเคราะห์ลำดับสารพันธุกรรม Sanger Sequencing (1977): เป็นเทคนิคแรกที่ถูกพัฒนาขึ้นสำหรับการวิเคราะห์ลำดับ DNA โดยใช้กระบวนการหยุดยั้งการสังเคราะห์ DNA ที่ตำแหน่งฐานเฉพาะ ทำให้ได้ลำดับ DNA ทีละชิ้น กระบวนการนี้แม้จะมีความแม่นยำสูง แต่มีข้อจำกัดด้านความเร็วและปริมาณข้อมูลที่สามารถวิเคราะห์ได้ Next-Generation Sequencing (NGS): NGS เป็นเทคโนโลยีรุ่นใหม่ที่เปลี่ยนแปลงการวิเคราะห์ลำดับ DNA อย่างสิ้นเชิง โดยสามารถวิเคราะห์ DNA หลายล้านชิ้นพร้อมกันในเวลาเดียวกัน ทำให้ได้ข้อมูลที่มีปริมาณมากและความละเอียดสูงในเว...

Precision medicine หรือการแพทย์แม่นยำ คืออะไร

  Precision Medicine หรือการแพทย์แม่นยำ คืออะไร? การแพทย์แม่นยำ (Precision Medicine) เป็นแนวทางทางการแพทย์ที่มุ่งเน้นการดูแลและรักษาผู้ป่วยโดยคำนึงถึงความแตกต่างเฉพาะบุคคลของพันธุกรรม สภาพแวดล้อม และวิถีชีวิตของแต่ละบุคคล แนวคิดนี้มีเป้าหมายเพื่อลดความผิดพลาดในการรักษา และเพิ่มประสิทธิภาพในการวางแผนการดูแลสุขภาพได้อย่างเหมาะสมที่สุดสำหรับแต่ละบุคคล โดยต่างจากการแพทย์แบบดั้งเดิมที่มักใช้วิธีการรักษาแบบเดียวกันสำหรับผู้ป่วยทุกคนที่มีอาการคล้ายกัน องค์ประกอบสำคัญของการแพทย์แม่นยำ พันธุกรรม (Genomics): การศึกษาพันธุกรรมเป็นส่วนสำคัญใน Precision Medicine โดยการตรวจสอบ DNA ของผู้ป่วยสามารถช่วยระบุความเสี่ยงในการเกิดโรค หรือทำนายการตอบสนองต่อยา ตัวอย่างเช่น ผู้ป่วยที่มีการกลายพันธุ์ในยีน BRCA1 หรือ BRCA2 จะมีความเสี่ยงสูงต่อการเป็นมะเร็งเต้านมและรังไข่ ซึ่งข้อมูลนี้ช่วยให้แพทย์สามารถกำหนดแผนการตรวจคัดกรองและการป้องกันโรคที่เหมาะสมได้ ข้อมูลสภาพแวดล้อม: ปัจจัยด้านสิ่งแวดล้อม เช่น มลภาวะ สารเคมีในสิ่งแวดล้อม หรืออาหารที่รับประทาน มีผลต่อสุขภาพ การวิเคราะห์ปัจจัยเหล่านี้ร่วมกับข้อมูลพันธุก...

Phamacogenomics คืออะไร

 Pharmacogenomics คืออะไร Pharmacogenomics หรือ เภสัชพันธุศาสตร์ เป็นศาสตร์ที่ผสมผสานระหว่างพันธุศาสตร์ (Genomics) และเภสัชวิทยา (Pharmacology) เพื่อศึกษาและทำความเข้าใจผลกระทบของพันธุกรรมต่อการตอบสนองต่อยาในแต่ละบุคคล เป้าหมายหลักคือการพัฒนาการรักษาที่มีประสิทธิภาพและปลอดภัยมากขึ้นโดยปรับให้เหมาะสมกับลักษณะทางพันธุกรรมของผู้ป่วยแต่ละราย หลักการของ Pharmacogenomics Pharmacogenomics อาศัยความรู้เกี่ยวกับลำดับ DNA และการแปรผันทางพันธุกรรม เช่น การเกิด Single Nucleotide Polymorphisms (SNPs) หรือการเปลี่ยนแปลงของยีนที่มีผลต่อการทำงานของเอนไซม์ เมแทบอลิซึม และโปรตีนที่เกี่ยวข้องกับการดูดซึม กระจายตัว และการกำจัดยา ยกตัวอย่างเช่น: ยีน CYP450 (Cytochrome P450): มีบทบาทสำคัญในการเผาผลาญยา เช่น CYP2D6, CYP3A4 และ CYP2C19 การแปรผันในยีนเหล่านี้อาจส่งผลต่อการเผาผลาญยาช้าหรือเร็วเกินไป ยีน VKORC1 และ CYP2C9: เกี่ยวข้องกับการตอบสนองต่อยาต้านการแข็งตัวของเลือด เช่น วาร์ฟาริน (Warfarin) HLA-B*57:01: การตรวจหายีนนี้ช่วยลดความเสี่ยงจากอาการแพ้ยา Abacavir ที่ใช้รักษา HIV ประโยชน์ของ Pharmacoge...

BMI หรือ ดัชนีมวลกาย (Body Mass Index) คืออะไร

 ความหมายของค่า BMI BMI หรือ ดัชนีมวลกาย (Body Mass Index) เป็นค่าที่ใช้วัดระดับความสมส่วนของร่างกาย โดยคำนวณจากน้ำหนักและส่วนสูง เป็นตัวชี้วัดพื้นฐานที่แพทย์และบุคลากรทางการแพทย์ใช้ในการประเมินความเสี่ยงของโรคที่เกี่ยวข้องกับน้ำหนักตัว เช่น โรคอ้วน โรคหัวใจและหลอดเลือด และเบาหวาน เป็นต้น การคำนวณ BMI สูตรการคำนวณดัชนีมวลกายคือ: BMI = น้ำหนักตัว (กิโลกรัม) ส่วนสูง (เมตร) 2 \text{BMI} = \frac{\text{น้ำหนักตัว (กิโลกรัม)}}{\text{ส่วนสูง (เมตร)}^2} BMI = ส่วนสูง  ( เมตร ) 2 น้ำหนักตัว  ( กิโลกรัม ) ​ ตัวอย่างการคำนวณ: หากคุณมีน้ำหนัก 70 กิโลกรัม และสูง 1.75 เมตร BMI = 70 ( 1.75 ) 2 = 22.86 \text{BMI} = \frac{70}{(1.75)^2} = 22.86 BMI = ( 1.75 ) 2 70 ​ = 22.86 ค่า BMI ของคุณจะเท่ากับ 22.86 ซึ่งอยู่ในช่วง "น้ำหนักปกติ" การแปลผลค่า BMI ช่วง BMI (กก./ม²) การแปลผล ต่ำกว่า 18.5 น้ำหนักต่ำกว่าเกณฑ์ 18.5 – 24.9 น้ำหนักปกติ 25.0 – 29.9 น้ำหนักเกิน 30.0 ขึ้นไป โรคอ้วน (Obesity) หมายเหตุ: ค่า BMI อาจไม่ได้เหมาะสมกับทุกกลุ่มคน เช่น นักกีฬา ผู้ที่มีกล้ามเนื้อมาก หรือผู้สูงอา...